中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (1): 16-24.doi: 10.16265/j.cnki.issn1003-3033.2025.01.0441

• 安全社会科学与安全管理 • 上一篇    下一篇

基于贝叶斯网络的生物样本无人机运输风险评估

柳青(), 沈恬   

  1. 中国民航大学 交通科学与工程学院,天津 300300
  • 收稿日期:2024-08-07 修回日期:2024-10-12 出版日期:2025-01-28
  • 作者简介:

    柳 青 (1979—),男,安徽合肥人,博士,副教授,主要从事无人机安全等方面的研究。E-mail:

  • 基金资助:
    民航联合基金资助(U1633123); 中国民航局安全能力项目([2022]266号)

Risk assessment of biological sample transport by UAVs based on Bayesian networks

LIU Qing(), SHEN Tian   

  1. School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2024-08-07 Revised:2024-10-12 Published:2025-01-28

摘要:

为量化生物样本无人机(UAV)运输风险,首先,依据国家标准规范和相关研究,在分析生物样本无人机运输流程基础上,从人-机-环-管-危5个维度确定生物样本无人机运输过程的32个风险因素;其次,利用Netica软件构建生物样本UAV运输风险评估贝叶斯网络(BN),利用专家先验知识和模糊集量化分析确定先验概率;然后,利用建立的生物样本无人机运输风险评估模型进行双向推理和情景分析;最后,以深圳某无人机企业为例,评估生物样本无人机运输风险,得出关键影响因素。结果表明: 以正向推理计算出的生物样本UAV运输的风险概率约为2.203×10-5,造成运输风险的主要原因是危险品因素,其次是设施设备因素;影响生物样本UAV运输风险的核心因素为危险品包装件的尺寸/数量/重量、专用冷链物流箱控温效果、应急预案完善情况、安全应急处置能力、安全教育管理和障碍物因素。

关键词: 贝叶斯网络(BN), 生物样本, 无人机(UAV)运输, 风险评估, 应急处置

Abstract:

To quantify the transportation risks associated with biological samples using UAVs, this study first identified 32 risk factors across five dimensions-human, machine, environment, management, and hazard-based on national standards and relevant literature. A BN for risk assessment was constructed using Netica software, with prior probabilities determined through expert knowledge and fuzzy set quantitative analysis. The proposed risk assessment model was then used for bidirectional reasoning and scenario analysis. A case study of a UAV company in Shenzhen was presented to evaluate the transportation risks of biological samples and identify key influencing factors. The results indicate that the risk probability of biological sample transportation, as calculated through forward reasoning, is approximately 2.203×10-5. The primary risk factors are related to hazardous materials, followed by equipment and facility-related issues. The core risk factors influencing biological sample transportation include the size, quantity and weight of hazardous material packages, the temperature control effectiveness of specialized cold chain logistics boxes, the integrity of emergency response plans, emergency handling capabilities, safety management and education, and the presence of obstacles.

Key words: Bayesian networks (BN), biological samples, unmanned aerial vehicle (UAV) transportation, risk assessment, emergency response

中图分类号: