中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (11): 49-55.doi: 10.16265/j.cnki.issn1003-3033.2025.11.0260

• 安全工程技术 • 上一篇    下一篇

面向露天矿无人矿卡行驶障碍物检测模型

刘光伟(), 张浩博**(), 雷健, 黄云龙, 任崇辉   

  1. 辽宁工程技术大学 矿业学院,辽宁 阜新 123000
  • 收稿日期:2025-05-10 修回日期:2025-08-11 出版日期:2025-11-28
  • 通信作者:
    ** 张浩博(2000—),男,内蒙古呼伦贝尔人,硕士研究生,研究方向为机器视觉及露天开采理论与技术。E-mail:
  • 作者简介:

    刘光伟 教授 (1981—),男,辽宁沈阳人,博士,教授,主要从事露天矿开采设计基础理论与矿业系统工程研究。E-mail:

    黄云龙 讲师。

  • 基金资助:
    国家自然科学基金资助(52374123); 辽宁省教育厅基本科研项目(LJ212510147033)

Obstacle detection model for unmanned mining trucks during driving in open-pit mines

LIU Guangwei(), ZHANG Haobo**(), LEI Jian, HUANG Yunlong, REN Chonghui   

  1. School of Mining, Liaoning Technical University, Fuxin Liaoning 123000, China
  • Received:2025-05-10 Revised:2025-08-11 Published:2025-11-28

摘要: 为准确检测到露天矿无人矿卡行驶途中的障碍物,提出一种改进YOLOv8的障碍物检测模型。首先,通过引入超级令牌注意力机制(STA),解决传统注意力机制存在的冗余计算与全局建模不足的问题,增强对小目标和遮挡目标的特征表达能力;其次,设计颈部网络结构,融合高低层级特征,进一步提升小目标的定位精度;然后,构建复合损失函数,平衡边界框回归精度与鲁棒性,以适应露天矿障碍物的多样形态;最后,利用自建数据集对比验证改进模型的有效性。结果表明:改进后的模型精度、召回率、交并比(IoU)阈值为0.5时的平均精度均值(mAP@50)分别为86.2%、78.9%、83.1%,较YOLOv8分别提升10.3%、19.4%、18.0%;改进模型在检测精度、召回率和计算复杂度方面均展现出优势。

关键词: 露天矿, 无人矿卡, 障碍物检测, 超级令牌注意力机制(STA), YOLOv8

Abstract:

To accurately detect obstacles during the operation of unmanned mining trucks in open-pit mines, an improved obstacle detection model based on YOLOv8 was proposed. Firstly, STA mechanism was introduced to address the issues of redundant computation and insufficient global modeling in traditional attention mechanisms, thereby enhancing the feature representation capability for small and occluded targets. Secondly, a neck network structure was designed to further improve the localization accuracy of small targets by fusing high-level and low-level features. Then, a compound loss function was constructed to balance the regression accuracy and robustness of bounding boxes, so as to adapt to the diverse shapes of obstacles in open-pit mines. Finally, a self-built dataset was utilized to conduct comparative experiments for verifying the effectiveness of the improved model. The results show that the accuracy, recall rate, and mean Average Precision (mAP) at an Intersection over Union(IoU) threshold of 0.5 of the improved model are 86.2%, 78.9%, and 83.1% respectively, which are 10.3%, 19.4%, and 18.0% higher than those of YOLOv8. Compared with traditional detection algorithms, the improved model exhibits advantages in detection accuracy, recall rate and computational complexity.

Key words: open-pit mine, unmanned mining truck, obstacle detection, super token attention mechanism (STA), YOLOv8

中图分类号: