| [1] |
杨林松, 刘继国, 舒恒, 等. 超大直径盾构隧道下穿铁路施工的离心机模型试验研究[J]. 现代隧道技术, 2021, 58(4):170-177,184.
|
|
YANG Linsong, LIU Jiguo, SHU Heng, et al. Centrifugal model test on construction process of a super large diameter shield tunnel passing under existing railway[J]. Modern Tunnelling Technology, 2021, 58(4): 170-177,184.
|
| [2] |
孙国茹, 孟卫杰, 孙津津, 等. 砂土地区盾构下穿铁路股道变形影响分析[J]. 粉煤灰综合利用, 2025, 39(2):124-130.
|
|
SUN Guoru, MENG Weijie, SUN Jinjin, et al. Analysis of the effect of deformation of shield tunnel under railway strand in sandy soil area[J]. Fly Ash Comprehensive Utilization, 2025, 39(2): 124-130.
|
| [3] |
娄洪峻, 苏栋, 林星涛, 等. 超大直径盾构下穿高铁路基的沉降数值分析[J]. 深圳大学学报:理工版, 2024, 41(3):377-386.
|
|
LOU Hongjun, SU Dong, LIN Xingtao, et al. Numerical simulation analysis of settlement for super-large diameter shield tunneling undercrossing high-speed railway subgrade[J]. Journal of Shenzhen University:Science and Engineering, 2024, 41(3): 377-386.
doi: 10.3724/SP.J.1249.2024.03377
|
| [4] |
陈明江, 路小民, 陆帅, 等. 超大直径泥水盾构下穿运营铁路沉降因素分析及控制方法[J]. 工程机械, 2024, 55(7):225-232,16-17.
|
|
CHEN Mingjiang, LU Xiaomin, LU Shuai, et al. Analysis of settlement factors and control methods for large-diameter slurry shield passing beneath active railways[J]. Construction Machinery and Equipment, 2024, 55(7): 225-232, 16-17.
|
| [5] |
马相峰, 王立川, 龚伦, 等. 砂卵石地层双线地铁盾构下穿铁路路基变形及地层注浆加固研究[J]. 隧道建设:中英文, 2021, 41(增1):181-189.
|
|
MA Xiangfeng, WANG Lichuan, GONG Lun, et al. Deformation and grouting reinforcement for railway subgrade crossed by a double-track metro shield tunnel in sandy-cobble strata[J]. Tunnel Construction, 2021, 41(S1): 181-189.
|
| [6] |
林家桢. 地铁盾构下穿高速铁路路基的变形控制方案研究[J]. 水利与建筑工程学报, 2025, 23(1):93-101.
|
|
LIN Jiazhen. Deformation control scheme for high-speed railway subgrade when subway shield tunneling under-passing[J]. Journal of Water Resources and Architectural Engineering, 2025, 23(1): 93-101.
|
| [7] |
孙铁成, 王爱玉, 张岩俊, 等. 囊袋式注浆对盾构下穿高速铁路路基沉降的控制效果[J]. 铁道建筑, 2024, 64(9):120-126.
|
|
SUN Tiecheng, WANG Aiyu, ZHANG Yanjun, et al. Control effect of capsuled grouting on settlement while shield tunneling underpass high speed railway subgrade[J]. Railway Engineering, 2024, 64(9): 120-126.
|
| [8] |
吴贤国, 冯宗宝, 刘俊, 等. 基于RF-NSGA-Ⅱ的盾构施工地表沉降安全控制多目标优化[J]. 中国安全科学学报, 2022, 32(8): 45-51.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702
|
|
WU Xianguo, FENG Zongbao, LIU Jun, et al. Multi-objective optimization of surface settlement safety control during shield construction based on RF-NSGA-Ⅱ[J]. China Safety Science Journal, 2022, 32(8): 45-51.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702
|
| [9] |
吴贤国, 刘俊, 苏飞鸣, 等. 基于CatBoost-MOEAD的大直径泥水盾构施工多目标预测优化[J]. 中国安全科学学报, 2024, 34(6): 57-64.
doi: 10.16265/j.cnki.issn1003-3033.2024.06.1734
|
|
WU Xianguo, LIU Jun, SU Feiming, et al. Multi-objective prediction optimization for large-diameter slurry shield tunneling construction based on CatBoost-MOEAD[J]. China Safety Science Journal, 2024, 34(6): 57-64.
doi: 10.16265/j.cnki.issn1003-3033.2024.06.1734
|
| [10] |
贾剑青, 贾超, 赖远明, 等. 高速铁路路基加固效果及稳定性分析[J]. 中国安全科学学报, 2020, 30(6):50-56.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.008
|
|
JIA Jianqing, JIA Chao, LAI Yuanming. et al. Reinforcement effect and stability analysis of high speed railway roadbed[J]. China Safety Science Journal, 2020, 30(6): 50-56.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.008
|
| [11] |
刘博. 盾构机土仓压力控制模型参数辨识方法研究[D]. 大连: 大连理工大学, 2011.
|
|
LIU Bo. Model parameters identification procedure of chamber pressure control in shield tunneling[D]. Dalian: Dalian University of Technology, 2011.
|