China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (6): 123-130.doi: 10.16265/j.cnki.issn1003-3033.2022.06.2634
• Safety engineering technology • Previous Articles Next Articles
Received:
2022-01-10
Revised:
2022-04-20
Online:
2022-06-28
Published:
2022-12-28
TANG Tao, GAN Jing. A train running time prediction model based on domestic and foreign railway operation data[J]. China Safety Science Journal, 2022, 32(6): 123-130.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.06.2634
Tab.3
Predicted results of each model
线路 | 指标 | HGBT | RF | AB | GB | ANN | SVM |
---|---|---|---|---|---|---|---|
C | MAE | 0.764 | 0.771 | 1.145 | 0.793 | 0.907 | 1.238 |
MAPE/% | 5.59 | 5.62 | 8.69 | 5.81 | 6.72 | 8.77 | |
R2 | 0.912 | 0.902 | 0.864 | 0.908 | 0.893 | 0.812 | |
E | MAE | 0.356 | 0.371 | 0.392 | 0.376 | 0.402 | 0.756 |
MAPE/% | 7.54 | 7.78 | 7.90 | 8.18 | 8.94 | 19.42 | |
R2 | 0.876 | 0.869 | 0.862 | 0.872 | 0.868 | 0.766 |
[1] |
doi: 10.1016/j.ejor.2017.04.057 |
[2] |
何华武, 朱亮, 李平, 等. 智能高铁体系框架研究[J]. 中国铁路, 2019 (3): 1-8.
|
|
|
[3] |
胡瑞, 徐传玲, 冯永泰, 等. 广深高速铁路列车分类型晚点预测[J]. 中国安全科学学报, 2019, 29(增2): 181-186.
|
doi: 10.16265/j.cnki.issn1003-3033.2019.S2.030 |
|
[4] |
|
[5] |
doi: 10.1016/j.trc.2018.08.003 |
[6] |
胡雨欣, 彭其渊, 鲁工圆, 等. 基于初始晚点和冗余时间的列车晚点恢复时间预测模型[J]. 交通运输工程与信息学报, 2020, 18(2):93-102.
|
|
|
[7] |
龙时丹. 面向高速铁路的全自动运行系统应用[J]. 中国安全科学学报, 2020, 30(增1): 92-97.
|
doi: 10.16265/j.cnki.issn1003-3033.2020.S1.017 |
|
[8] |
doi: 10.1016/j.trc.2019.04.026 |
[9] |
孙延浩, 张琦, 任禹谋, 等. 基于改进灰色马尔科夫模型的列车晚点预测[J]. 计算机仿真, 2020, 37(6):117-121,135.
|
|
|
[10] |
胡瑞, 文超, 张梦颖, 等. 高速列车晚点预测的机器学习模型[J]. 中国铁路, 2020(11):72-77.
|
|
|
[11] |
张琦, 陈峰, 张涛, 等. 高速铁路列车连带晚点的智能预测及特征识别[J]. 自动化学报, 2019, 45(12): 2251-2259.
|
|
|
[12] |
廖璐, 陈峰, 葛晓程, 等. 基于GBDT的列车晚点时长预测模型研究[J]. 铁道标准设计, 2022, 65(8): 149-154,176.
|
|
|
[13] |
doi: 10.1002/atr.193 |
[14] |
doi: 10.1016/j.trc.2015.04.004 |
[15] |
doi: 10.1016/j.ssci.2019.104510 |
[16] |
|
[1] | LI Delong, CHENG Yu, LI Youdong. Prediction model for demand for subway security inspectors under public health emergencies [J]. China Safety Science Journal, 2023, 33(S1): 228-234. |
[2] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[3] | SONG Yinghua, JIANG Chen, LI Moxiao, QI Shi. Rockburst prediction model based on improved Smote-GBDT algorithm [J]. China Safety Science Journal, 2023, 33(9): 25-32. |
[4] | WANG Wei, LIANG Ran, QI Yun, JIA Baoshan, WU Zewei. Prediction model of coal spontaneous combustion risk based on PSO-BPNN [J]. China Safety Science Journal, 2023, 33(7): 127-132. |
[5] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[6] | LI Shuai, LIAN Zhanghua, DING Lingling, LIAO Tao. Prediction model of sustained annular pressure of gas wells under multi-factor coupling effect [J]. China Safety Science Journal, 2023, 33(2): 166-172. |
[7] | MENG Xianghai, YOU Bingyu, QIU Zhixiong, LI Zhixiao, ZHANG Mingyang. Accident prediction model of mountainous freeway based on crash modification factors [J]. China Safety Science Journal, 2023, 33(1): 10-17. |
[8] | YANG Peipei, XIONG Jian, HE Yangfan. Anxiety level model of drivers on sharp circular curve road [J]. China Safety Science Journal, 2023, 33(1): 227-232. |
[9] | JIN Lianghai, CHEN Ying, YANG Yingliu, SHAO Bo. Generalized algebraic difference approach prediction model for elevator equipment safety accidents rate [J]. China Safety Science Journal, 2023, 33(1): 64-69. |
[10] | JING Fei. Research on human factors analysis of railway violations based on data analysis [J]. China Safety Science Journal, 2022, 32(S2): 54-59. |
[11] | GAO Yunji, LUO Yueyang, LI Zhisheng, ZHANG Yuchun, YU Yangyang, LI Tao. Experimental study on smoke back-layering length and temperature distribution in bifurcation tunnels [J]. China Safety Science Journal, 2022, 32(3): 109-115. |
[12] | ZHANG Lidong, SONG Zeyang, LUO Zhenmin, ZHAO Shanshan. Prediction of coal spontaneous combustion period based on machine learning [J]. China Safety Science Journal, 2022, 32(12): 118-124. |
[13] | HUANG Changhai, SHEN Jia, ZHU Ranchao, QI Xucun, ZHENG Fei, LU Hao. Causation analysis model for ship traffic accidents based on C5.0 decision tree and application [J]. China Safety Science Journal, 2022, 32(10): 90-99. |
[14] | WU Chengcheng, CHEN Dawei. Spatial prediction model for risk points of non-motor vehicle conflict in intersections [J]. China Safety Science Journal, 2021, 31(8): 165-171. |
[15] | LIU Yuqing, ZHANG Peihong. Study on fire-induced smoke temperature distribution characteristics in largely inclined roadway [J]. China Safety Science Journal, 2021, 31(4): 156-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||