China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (10): 48-56.doi: 10.16265/j.cnki.issn1003-3033.2022.10.2045
• Safety engineering technology • Previous Articles Next Articles
KE Lihua1,2(), CHEN Kuixiang1,2, HU Nanyan1,2,**(
), TAN Ming3, ZHANG Guangquan1,2, MENG Huanhuan1,2
Received:
2022-04-25
Revised:
2022-08-10
Online:
2022-10-28
Published:
2023-04-28
Contact:
HU Nanyan
KE Lihua, CHEN Kuixiang, HU Nanyan, TAN Ming, ZHANG Guangquan, MENG Huanhuan. Safety risk assessment of blasting in open-pit mine based on SNA[J]. China Safety Science Journal, 2022, 32(10): 48-56.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.10.2045
Tab.1
Blasting safety risk factors and accident types in open pit mine
风险维度 | 风险因素 | 文献序号 | 引发的事故类型 |
---|---|---|---|
安全管理 | 爆破技术指导和检查不到位P1 | [ | V2、V4、V5 |
无奖罚制度P2 | [ | V1、V2、V3、V4、V5 | |
爆破器材管理不良P3 | [ | V1、V4、V5 | |
安全教育培训未落实P4 | [ | V1、V2、V4、V5 | |
人员 | 爆破设计不合理P5 | [ | V2、V3、V4 |
安全意识薄弱P6 | [ | V1、V2、V3、V4、V5 | |
爆破前的核实与验收不到位P7 | [ | V1、V2、V3、V4 | |
爆孔填塞不合格P8 | [ | V2、V4 | |
违规操作P9 | [ | V1、V2、V3、V4、V5 | |
环境 | 危险品储存条件差P10 | [ | V1、V5 |
危险品运输不当P11 | [ | V5 | |
工作面地质条件差P12 | [ | V1、V2、V3、V4 | |
天气恶劣P13 | [ | V4、V5 | |
爆破器材 | 炸药质量问题P14 | [ | V1、V4、V5 |
起爆网络故障P15 | [ | V4、V5 | |
起爆器材质量问题P16 | [ | V4、V5 |
Tab.2
Basic data of model A network for blasting safety risk assessment in open-pit mine
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | P16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
P2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
P4 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | P16 | |
P5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
P6 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
P7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
P8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
P9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
P10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
P11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
P12 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
P13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
P14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Tab.3
Basic data of model B network for blasting safety risk assessment in open-pit mine
V1 | V2 | V3 | V4 | V5 | |
---|---|---|---|---|---|
P1 | 0 | 1 | 0 | 1 | 1 |
P2 | 1 | 1 | 1 | 1 | 1 |
P3 | 1 | 0 | 0 | 1 | 1 |
P4 | 1 | 1 | 0 | 1 | 1 |
P5 | 0 | 1 | 1 | 1 | 0 |
P6 | 1 | 1 | 1 | 1 | 1 |
P7 | 1 | 1 | 1 | 1 | 0 |
P8 | 0 | 1 | 0 | 1 | 0 |
P9 | 1 | 1 | 1 | 1 | 1 |
P10 | 1 | 0 | 0 | 0 | 1 |
P11 | 0 | 0 | 0 | 0 | 1 |
P12 | 1 | 1 | 1 | 1 | 0 |
P13 | 0 | 0 | 0 | 1 | 1 |
P14 | 1 | 0 | 0 | 1 | 1 |
P15 | 0 | 0 | 0 | 1 | 1 |
P16 | 0 | 0 | 0 | 1 | 1 |
Tab.4
Centrality of safety risk factors in the model A networks
P | 相对度数 中心度 | 中间中 心度 | 接近中心度 | P | 相对度数 中心度 | 中间中 心度 | 接近中心度 | ||
---|---|---|---|---|---|---|---|---|---|
入度远离度 | 出度远离度 | 入度远离度 | 出度远离度 | ||||||
P1 | 0.667 | 1.168 | 195 | 63 | P9 | 0.467 | 3.073 | 165 | 135 |
P2 | 0.467 | 0.000 | 240 | 51 | P10 | 0.200 | 0.406 | 137 | 195 |
P3 | 0.333 | 0.954 | 180 | 165 | P11 | 0.200 | 0.406 | 137 | 195 |
P4 | 0.467 | 1.143 | 195 | 65 | P12 | 0.267 | 0.000 | 240 | 166 |
P5 | 0.133 | 0.651 | 168 | 196 | P13 | 0.267 | 0.000 | 240 | 124 |
P6 | 0.667 | 1.505 | 196 | 62 | P14 | 0.000 | 0.000 | 49 | 240 |
P7 | 0.200 | 0.628 | 151 | 195 | P15 | 0.000 | 0.000 | 32 | 240 |
P8 | 0.133 | 0.544 | 109 | 210 | P16 | 0.067 | 0.000 | 93 | 225 |
Tab.5
Subset Density matrix of blasting safety risk factors in open-pit mine
Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Z7 | Z8 | |
---|---|---|---|---|---|---|---|---|
Z1 | 0.500 | 0.500 | 0.833 | 0.000 | 1.000 | 1.000 | 0.750 | 0.500 |
Z2 | 1.000 | 0.500 | 0.833 | 0.000 | 0.500 | 0.500 | 0.000 | 0.000 |
Z3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 | 0.667 | 0.833 | 0.667 |
Z4 | 0.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 |
Z5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 | 0.000 | 1.000 | 0.000 |
Z6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 |
Z7 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 | 0.000 |
Tab.6
Subset image matrix of blasting safety risk factors in open-pit mine
Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Z7 | Z8 | |||
---|---|---|---|---|---|---|---|---|---|---|
Z1 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 6 | 1 |
Z2 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 4 | 1 |
Z3 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 4 | 0 |
Z4 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 3 | 0 |
Z5 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1 | 1 |
Z6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 2 | 0 |
Z7 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 |
Z8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 1 | 0 |
1 | 1 | 3 | 0 | 3 | 3 | 6 | 4 | — | — |
Tab.7
Centrality of risk factors in model B networks
P | 相对度数 中心度 | 中间 中心度 | 相对接近 中心度 | P | 相对度数 中心度 | 中间 中心度 | 相对接近 中心度 |
---|---|---|---|---|---|---|---|
P1 | 0.600 | 0.015 | 0.897 | P9 | 1.000 | 0.049 | 1.000 |
P2 | 1.000 | 0.049 | 1.000 | P10 | 0.400 | 0.004 | 0.778 |
P3 | 0.600 | 0.013 | 0.897 | P11 | 0.200 | 0.000 | 0.686 |
P4 | 0.800 | 0.027 | 0.946 | P12 | 0.800 | 0.021 | 0.897 |
P5 | 0.600 | 0.010 | 0.814 | P13 | 0.400 | 0.005 | 0.854 |
P | 相对度数 中心度 | 中间 中心度 | 相对接近 中心度 | P | 相对度数 中心度 | 中间 中心度 | 相对接近 中心度 |
P6 | 1.000 | 0.049 | 1.000 | P14 | 0.600 | 0.013 | 0.897 |
P7 | 0.800 | 0.021 | 0.897 | P15 | 0.400 | 0.005 | 0.854 |
P8 | 0.400 | 0.003 | 0.778 | P16 | 0.400 | 0.005 | 0.854 |
Tab.9
Core safety risk factors and key relationship control measures
风险控 制对象 | 控制措施 |
---|---|
P1 | 1) 制定安全检查制度,严格遵守《爆破安全规程》《爆破安全管理方案》系列规章制度 |
P2 | 1) 建立完善的奖惩制度,做到违章必惩,奖罚分明,以精神鼓励和物质奖励相结合,教育和惩罚相结合为原则 |
风险控 制对象 | 控制措施 |
P3 | 1) 制定严格的爆破器材管理制度,明确相关责任人 2) 定期检查爆破器材的存储条件、外观和质量等 |
P4 | 1) 加强安全管理,定期检查安全培训落实情况 2) 树立“安全第一,预防为主”的企业文化,有利于教育培训的常态化发展 |
P6 | 1) 落实班前安全教育,提高作业人员安全意识 2) 安全责任划分,将责任落实到每一位作业人员身上 |
P7 | 1) 定期技术培训作业人员,提高人员作业水平 2) 加强对爆破前的核实与验收 |
P9 | 1) 定期安全技术培训,规范作业操作步骤 2) 制定奖惩措施,严惩违规操作行为 |
P5→P8 | 1) 爆破设计时遵守相关规定,并充分考虑爆破区域的地质条件 2) 加强对炮孔填塞的质量检查 |
[1] |
罗文贵, 谢贤平, 栗美维, 等. 爆破工程中电爆网络拒爆事故分析及对策[J]. 安全与环境学报, 2016, 16(2):20-24.
|
|
|
[2] |
周寅, 张建华. 事故树在露天矿爆破飞石危险性分析中的应用[J]. 金属矿山, 2011(6):140-142.
|
|
|
[3] |
doi: 10.1016/j.ssci.2005.07.006 |
[4] |
doi: 10.33271/mining13.03.076 |
[5] |
冯琳云, 王珏, 张燕, 等. 基于社会网络的高校不安全因素影响机制及安全管理研究[J]. 中国安全生产科学技术, 2020, 16(4):156-161.
|
|
|
[6] |
李书全, 冯雅清, 胡松鹤, 等. 基于社会网络的建筑施工不安全行为关系研究[J]. 中国安全科学学报, 2017, 27(6):7-12.
doi: 10.16265/j.cnki.issn1003-3033.2017.06.002 |
doi: 10.16265/j.cnki.issn1003-3033.2017.06.002 |
|
[7] |
doi: 10.1016/j.buildenv.2013.12.014 |
[8] |
李振明, 牛毅, 樊运晓, 等. 不同区域高速公路货车事故特征研究[J]. 中国安全科学学报, 2020, 30(6):121-127.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.018 |
doi: 10.16265/j.cnki.issn1003-3033.2020.06.018 |
|
[9] |
秦旋, 李怀全, 莫懿懿. 基于SNA视角的绿色建筑项目风险网络构建与评价研究[J]. 土木工程学报, 2017, 50(2):119-131.
|
|
|
[10] |
宋英华, 田丽, 吕伟, 等. 基于SNA的重特大道路交通事故风险指标体系构建[J]. 中国安全生产科学技术, 2019, 15(6):151-156.
|
|
|
[11] |
凌申怀, 许梦国, 程勃, 等. 某金属矿山采场爆破系统的模糊FMECA评价[J]. 黄金, 2011, 32(1):33-37.
|
|
|
[12] |
马亚萍, 李丽华, 张辉. 考虑社会关系影响的小学生疏散行为研究[J]. 中国安全科学学报, 2019, 29(12):144-151.
doi: 10.16265/j.cnki.issn1003-3033.2019.12.023 |
doi: 10.16265/j.cnki.issn1003-3033.2019.12.023 |
|
[13] |
陈文强, 李艳飞, 于静. 基于社会网络分析的城市综合管廊安全风险网络构建及评价[J]. 安全与环境学报, 2020, 20(5):1652-1660.
|
|
[1] | TIAN Feng, TANG Xiaoqian, QIAO Dongqing. Open-pit truck scheduling optimization method based on SA-CSA [J]. China Safety Science Journal, 2023, 33(S2): 176-181. |
[2] | WEI Dezhi, DU Zhiyong, TENG Chunyang, XIN Wutian, LI Zekun. Study on safety monitoring technology for chain fracture in crushing station of open-pit mine [J]. China Safety Science Journal, 2023, 33(S2): 170-175. |
[3] | ZHAO Zhongqi, YU Haicheng, BAI Baoshan, XIE Miao. Research on automatic identification and location technology of water filling nozzle used in open-pit mines [J]. China Safety Science Journal, 2023, 33(S2): 216-221. |
[4] | WANG Guilin, ZHAO Changhai, SONG Delin. Research on influencing factors of air pollution in open-pit mines based on environmental safety improvement [J]. China Safety Science Journal, 2023, 33(S2): 77-84. |
[5] | LI Guanghe, HU Zihuan, WANG Dong, WANG Laigui, ZHOU Zhiwei, DING Chunjian. Study on instability criterion of rib pillars in open-pit during highwall mining [J]. China Safety Science Journal, 2023, 33(9): 122-128. |
[6] | LIU Dan, ZHU Weichang, LI Moxiao, JIN Qingsong, SAIDAH Saad. Network analysis of chemical safety critical causation from perspective of stakeholders [J]. China Safety Science Journal, 2023, 33(11): 59-66. |
[7] | FA Huiyan, SHUAI Bin, LYU Min, HUANG Wencheng. Safety risk assessment of multimodal transportation of China Railway Express based on WBS-RBS and IFWA operator [J]. China Safety Science Journal, 2022, 32(6): 200-206. |
[8] | ZHANG Miao. Risk assessment of metro operation based on G1-EW combination weighting cloud model [J]. China Safety Science Journal, 2022, 32(6): 163-170. |
[9] | ZHANG Xiaoming, LIU Xiaoying, DONG Wei, ZHANG Hemeng, WANG Yongjun, SASAKI Kyuro. Experimental study on soil surface CO2 fluxes in goaf area of Haizhou open-pit mines [J]. China Safety Science Journal, 2022, 32(2): 66-73. |
[10] | JI Keke, LI Zhengzhong, LIU Shuang, ZHANG Xin, WANG Guangyan, WANG Xuting. Safety risk assessment for port quay crane installation construction [J]. China Safety Science Journal, 2022, 32(12): 102-109. |
[11] | CHEN Guohua, LI Jialing, CHEN Xuexi, YANG Qin. A safety risk assessment model of urban areas under disaster chain network [J]. China Safety Science Journal, 2022, 32(11): 146-153. |
[12] | YIN Yixiong. Safety risk assessment of open-pit mines based on quantitative theory [J]. China Safety Science Journal, 2021, 31(S1): 86-91. |
[13] | XIE Xiaoliang, CHU Qi, ZHANG Shujun, WEI Guo, CHENG Jiaqi. DBN-based monitoring method of vaccine transportation quality and safety risk [J]. China Safety Science Journal, 2020, 30(7): 19-26. |
[14] | HAN Zhaoyang, SUN Bin. Research on index screening program for monitoring and evaluating system of rail freight service quality [J]. China Safety Science Journal, 2018, 28(S2): 161-165. |
[15] | FENG Zijian. Research on railway freight safety risk assessment based on BP neural network [J]. China Safety Science Journal, 2018, 28(S1): 178-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||