China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (2): 225-232.doi: 10.16265/j.cnki.issn1003-3033.2023.02.0305
• Occupational health • Previous Articles Next Articles
LI Li(), CAO Yukuan, CHEN Yao, ZHAO Ying, QI Jinhao
Received:
2022-10-29
Revised:
2023-01-14
Online:
2023-02-28
Published:
2023-08-28
LI Li, CAO Yukuan, CHEN Yao, ZHAO Ying, QI Jinhao. Flight alert fatigue detection based on multi⁃physiological signals[J]. China Safety Science Journal, 2023, 33(2): 225-232.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.02.0305
Tab.1
Description of physiological index
指标 | 符号 | 描述 |
---|---|---|
心电 指标 | HR | 心率/(次·min-1) |
RRMEAN | RR间期均值/ms | |
SDNN | RR间期标准差/ms | |
RMSSD | RR间期差值均方根/ms | |
pNN50 | RR间期相邻间隔超过50 ms占比 | |
pNN100 | RR间期相邻间隔超过100 ms占比 | |
LFnorm | 标准化低频功率 | |
HFnorm | 标准化高频功率 | |
LF/HF | 低频与高频之比 | |
SD1 | 短期非线性指标/ms | |
SD2 | 长期非线性指标/ms | |
呼吸 指标 | Resp | 腹呼吸曲线/cm |
Resp_SD | 腹呼吸曲线标准差/cm | |
RespA | 呼吸振幅/cm | |
RespA_SD | 振幅标准差/cm | |
RespF | 呼吸频率/(次·min-1) | |
RespF_SD | 频率标准差/(次·min-1) | |
眼动 指标 | Fix_D | 注视时长/s |
MFix_d | 平均注视点时长/s | |
Per_TF | 注视时长占比 | |
Pup_A | 平均瞳孔面积/像素 |
Tab.2
ECG indexes with significant differences
心电 指标 | 清醒 | 疲劳 | Z值 | P值 | ||
---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | |||
HR | 78.002 | 12.716 | 76.35 | 10.888 | -2.503 | 0.012 |
RRMEAN | 787.442 | 113.899 | 799.906 | 99.92 | -1.940 | 0.032 |
SDNN | 84.186 | 52.352 | 84.015 | 41.792 | -4.665 | 0.001 |
RMSSD | 77.467 | 68.765 | 73.242 | 52.792 | -2.471 | 0.013 |
LFnorm | 43.407 | 9.762 | 46.255 | 8.204 | -5.401 | 0.001 |
HFnorm | 56.151 | 8.961 | 53.745 | 8.204 | -5.094 | 0.001 |
LF/HF | 0.824 | 0.303 | 0.907 | 0.309 | -5.490 | 0.001 |
Tab.6
Areas under ROC curves
检验结果 变量 | 面积 | 标准误a | 渐近 Sig.b | 渐近 95% 置信区间 | |
---|---|---|---|---|---|
下限 | 上限 | ||||
组合A | 0.802 | 0.027 | 0.000 | 0.749 | 0.855 |
组合B | 0.680 | 0.033 | 0.000 | 0.616 | 0.745 |
组合C | 0.796 | 0.028 | 0.000 | 0.742 | 0.850 |
组合D | 0.760 | 0.030 | 0.000 | 0.702 | 0.818 |
组合E | 0.666 | 0.034 | 0.000 | 0.600 | 0.732 |
组合F | 0.608 | 0.035 | 0.003 | 0.539 | 0.677 |
组合G | 0.742 | 0.031 | 0.000 | 0.681 | 0.803 |
[1] |
doi: S0022-4375(19)30673-5 pmid: 32199560 |
[2] |
doi: 10.1016/j.paerosci.2018.03.002 |
[3] |
doi: 10.1016/j.ress.2020.106930 |
[4] |
鲁胜华. 基于眼动仪的飞行员疲劳判定方法研究[D]. 天津: 中国民航大学, 2014.
|
|
|
[5] |
doi: 10.3390/s21093003 |
[6] |
|
[7] |
孙敬周. 基于生理指标测量的飞行学员疲劳特性与飞行品质评估研究[D]. 广汉: 中国民用航空飞行学院, 2018.
|
|
|
[8] |
范晓丽, 牛海燕, 周前祥, 等. 基于EEG的脑力疲劳特征研究[J]. 北京航空航天大学学报, 2016, 42(7):1406-1413.
|
|
|
[9] |
裘旭益, 仇峰, 吴奇. 面向飞行员疲劳状态监测的脑认知深度模型研究[J]. 航空电子技术, 2020, 51(4):13-19.
|
|
|
[10] |
doi: 10.1016/j.ergon.2020.102928 |
[11] |
doi: 10.1016/j.promfg.2015.07.383 |
[12] |
胡习之, 黄冰瑜. 基于面部特征分析的疲劳驾驶检测方法[J]. 科学技术与工程, 2021, 21(4):1629-1636.
|
|
|
[13] |
王莉莉, 朱敏. 基于脑电数据的管制架次对管制员疲劳影响研究[J]. 中国安全科学学报, 2021, 31(2):173-178.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.024 |
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.024 |
|
[14] |
doi: 10.3390/aerospace7090137 |
[15] |
|
[16] |
武琳玉, 梁伟, 沙夺林. 油气站场典型设备的焊缝缺陷检测与识别方法[J]. 中国安全科学学报, 2020, 30(11):108-113.
doi: 10.16265/j.cnki.issn 1003-3033.2020.11.016 |
doi: 10.16265/j.cnki.issn 1003-3033.2020.11.016 |
|
[17] |
|
[1] | WANG Tuanhui, WANG Chao, WU Shunchuan, WANG Qiwei, XU Jianhui. Slope stability prediction and application based on MISSA-SVM model [J]. China Safety Science Journal, 2024, 34(4): 135-144. |
[2] | WANG Junwu, HE Juanjuan, SONG Yinghui, LIU Yipeng, CHEN Zhao, GUO Jingyi. Research on early warning for prefabricated building workers' unsafe behaviors of working at height based on RF-SFLA-SVM [J]. China Safety Science Journal, 2024, 34(3): 1-8. |
[3] | QI Yun, XUE Kailong, WANG Wei, CUI Xinchao, WANG Hongxiang, QI Qingjie. Assessment model of emergency response capability for coal and gas outburst accidents in mines [J]. China Safety Science Journal, 2024, 34(2): 225-230. |
[4] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[5] | ZHENG Xiazhong, WANG Yu, CHEN Yun, ZHANG Meng, HE Shuangan. Construction safety training information presentation learning effect evaluation [J]. China Safety Science Journal, 2023, 33(5): 96-102. |
[6] | QIE Yanhui, GUO Tao, ZHOU Lingzhi, WANG Yu. Prediction of burst pressure of 20 steel elbow with defects based on SVM [J]. China Safety Science Journal, 2023, 33(2): 89-95. |
[7] | DENG Lijun, SHANG Wentian, LIU Jian, ZHOU Yukai, SONG Ying. Identification of air door opening and closing stage based on DWT and SVM [J]. China Safety Science Journal, 2023, 33(1): 95-104. |
[8] | YANG Wenchen, ZHOU Yanning, TIAN Bijiang, GUO Fengxiang, HU Chengyu. Traffic accident severity prediction for secondary highways based on cluster analysis and SVM model [J]. China Safety Science Journal, 2022, 32(5): 163-169. |
[9] | DING Xi, ZHAO Xiaodong, WU Xinjun, ZHANG Taili, XU Zhentao. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel [J]. China Safety Science Journal, 2022, 32(3): 194-200. |
[10] | ZHAO Tingsheng, PANG Qizhi, JIANG Wenxi. Safety risk prediction of construction elevator based on database and SVM [J]. China Safety Science Journal, 2021, 31(4): 11-17. |
[11] | LIU Yang, ZHANG Jianjing, LUO Hongsen, YU Haiying, XIANG Bo. Fuzzy-SVM prediction model of subgrade seismic damage based on Bayesian network [J]. China Safety Science Journal, 2021, 31(11): 171-178. |
[12] | ZHENG Xiaoliang, LAI Wenhao, XUE Sheng. Application of MI and SVM in coal and gas outburst prediction [J]. China Safety Science Journal, 2021, 31(1): 75-80. |
[13] | MA Hui, LYU Hang, LUAN Ruibin. Safety early-warning model of prefabricated construction based on spatial cell analysis [J]. China Safety Science Journal, 2020, 30(5): 27-32. |
[14] | CHU Wenhui, WU Chaozhong, ZHANG Hui, YANG Man , LI Siyao. Driver behavior model and its application in driver fatigue identification [J]. China Safety Science Journal, 2018, 28(6): 43-48. |
[15] | HU Jianfeng, WANG Taotao. Analysis of driving fatigue detection based on fuzzy entropy of EEG signals [J]. China Safety Science Journal, 2018, 28(4): 13-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||