China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (2): 89-95.doi: 10.16265/j.cnki.issn1003-3033.2023.02.1269
• Safety engineering technology • Previous Articles Next Articles
QIE Yanhui1(), GUO Tao1, ZHOU Lingzhi1, WANG Yu2
Received:
2022-09-17
Revised:
2022-12-16
Online:
2023-02-28
Published:
2023-08-28
QIE Yanhui, GUO Tao, ZHOU Lingzhi, WANG Yu. Prediction of burst pressure of 20 steel elbow with defects based on SVM[J]. China Safety Science Journal, 2023, 33(2): 89-95.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.02.1269
Tab.3
Training sample data of elbow with local wall-thinning
样本 编号 | 减薄 长度/ (°) | 减薄 宽度/ (°) | 减薄 深度/ mm | 爆破压力/MPa | ||
---|---|---|---|---|---|---|
外拱 内部 | 中性线 内部 | 内拱 内部 | ||||
1-3 | 5 | 5 | 1.8 | 140.3 | 139.2 | 131.7 |
4-6 | 5 | 20 | 2.7 | 137.8 | 135.2 | 130.4 |
7-9 | 5 | 20 | 4.5 | 118.4 | 116.3 | 115.1 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
79-81 | 10 | 10 | 3.6 | 113.2 | 111.2 | 109.1 |
82-84 | 10 | 15 | 1.8 | 137.2 | 133.4 | 129.1 |
85-87 | 10 | 35 | 5.4 | 82.2 | 80.7 | 80.3 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
160-162 | 20 | 20 | 5.4 | 74.7 | 74.2 | 73.3 |
163-165 | 20 | 35 | 1.8 | 136.2 | 131.3 | 127.7 |
166-168 | 30 | 30 | 1.8 | 135.3 | 129.8 | 125.7 |
Tab.6
Calculation results of burst pressure of 20 steel elbow with local thinning defects
数据 编号 | 减薄 长度/ (°) | 减薄 宽度/ (°) | 减薄 深度/ mm | 缺陷 位置 | ASME B31G- 2009/MPa | DNV RPF101/ MPa | SHELL 92/ MPa | CV-SVM/ MPa | GA-SVM/ MPa | PSO-SVM/ MPa | 显式非线 性有限元/ MPa |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 20 | 3.6 | 内拱 | 81.95 | 109.80 | 88.11 | 127.34 | 129.44 | 128.53 | 129.6 |
2 | 5 | 20 | 3.6 | 中性线 | 81.91 | 109.76 | 88.02 | 125.01 | 127.60 | 125.05 | 126.2 |
3 | 5 | 20 | 3.6 | 外拱 | 81.87 | 109.70 | 87.92 | 122.29 | 124.30 | 122.55 | 124.2 |
4 | 10 | 15 | 5.4 | 内拱 | 80.50 | 107.53 | 83.74 | 90.20 | 90.74 | 90.67 | 89.8 |
5 | 10 | 15 | 5.4 | 中性线 | 80.26 | 107.15 | 83.05 | 89.69 | 89.75 | 89.74 | 90.7 |
6 | 10 | 15 | 5.4 | 外拱 | 79.99 | 106.73 | 82.33 | 88.70 | 88.77 | 89.86 | 89.2 |
7 | 20 | 35 | 4.5 | 内拱 | 77.89 | 103.92 | 78.16 | 87.94 | 87.47 | 90.34 | 89.3 |
8 | 20 | 35 | 4.5 | 中性线 | 77.36 | 103.09 | 77.01 | 86.145 | 85.20 | 88.54 | 88.2 |
9 | 20 | 35 | 4.5 | 外拱 | 76.83 | 102.23 | 75.89 | 84.19 | 83.73 | 87.26 | 85.6 |
10 | 30 | 20 | 1.8 | 内拱 | 79.65 | 106.88 | 83.59 | 133.17 | 133.10 | 132.89 | 132.7 |
11 | 30 | 20 | 1.8 | 中性线 | 79.39 | 106.47 | 83.10 | 129.12 | 129.90 | 129.60 | 129.2 |
12 | 30 | 20 | 1.8 | 外拱 | 79.13 | 106.07 | 82.64 | 124.09 | 124.48 | 122.81 | 123.2 |
[1] |
李艳, 赵均海, 曹雪叶, 等. 内压作用下弯管爆破压力的三剪统一解[J]. 应用力学学报, 2015, 32(4): 530-536,700.
|
|
|
[2] |
陈钢, 张传勇, 刘应华. 内压和面内弯矩作用下含局部减薄弯头塑性极限载荷的有限元分析[J]. 工程力学, 2005, 22(2): 43-49.
|
|
|
[3] |
李建, 周昌玉, 薛吉林. 含内局部减薄缺陷高温弯管蠕变极限载荷及其安全评定[J]. 机械强度, 2015, 37(2): 348-354.
|
|
|
[4] |
doi: 10.1080/17445302.2015.1116245 |
[5] |
张新生, 张玥. 基于Lasso-PSO-BP神经网络的腐蚀管道失效压力的预测[J]. 材料保护, 2020, 53(04):46-52.
|
|
|
[6] |
doi: 10.1016/j.nucengdes.2013.07.027 |
[7] |
doi: 10.1515/ijnaoe-2015-0031 |
[8] |
王佳音, 帅健, 刘道乾, 等. 内压作用下含体积型缺陷弯管极限载荷研究[J]. 中国安全生产科学技术, 2019, 15(9):158-163.
|
|
|
[9] |
doi: 10.1016/j.ijmecsci.2019.05.027 |
[10] |
doi: 10.1016/j.engstruct.2019.109720 |
[11] |
贾思奇, 郄彦辉, 李煜彤, 等. 基于遗传-神经网络算法的含均匀腐蚀缺陷油气管线爆破压力预测研究[J]. 中国安全生产科学技术, 2020, 16(12): 105-110.
|
|
|
[12] |
毕傲睿, 骆正山, 宋莹莹, 等. 内腐蚀海底管道剩余强度的FOA-GRNN模型[J]. 中国安全科学学报, 2020, 30(6): 78-83.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.012 |
doi: 10.16265/j.cnki.issn1003-3033.2020.06.012 |
|
[13] |
青树勇, 代卿, 郭鸿雁. 基于BP神经网络预测含腐蚀缺陷管道的极限压力[J]. 腐蚀与防护, 2018, 39(8): 634-637.
|
|
|
[14] |
靳文博, 肖荣鸽, 田震, 等. 基于广义回归神经网络的海底腐蚀管道极限承载力预测[J]. 热加工工艺, 2020, 49(8): 58-61.
|
|
|
[15] |
骆正山, 田珮琦. RS-PSO-ELM下腐蚀管道失效压力预测[J]. 中国安全科学学报, 2021, 31(3): 28-34.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.004 |
doi: 10.16265/j.cnki.issn1003-3033.2021.03.004 |
|
[16] |
马钢. 基于相关性分析和SVM算法的单缺陷管道剩余强度预测[D]. 西安: 西安石油大学, 2020.
|
|
|
[17] |
|
[18] |
骆正山, 王浩, 毕傲睿. 基于RS-SVM 的城市埋地燃气管道外腐蚀情况评价[J]. 中国安全科学学报, 2017, 27(6):109-114.
doi: 10.16265/j.cnki.issn1003-3033.2017.06.019 |
doi: 10.16265/j.cnki.issn1003-3033.2017.06.019 |
|
[19] |
周凌志. 基于有限元模拟的含局部减薄缺陷弯头的爆破压力研究[D]. 天津: 河北工业大学, 2021.
|
|
|
[20] |
李晓帅. 压力容器与压力管道元件的爆破压力研究[D]. 天津: 河北工业大学, 2017.
|
|
|
[21] |
周启超, 刘剑, 刘丽, 等. 基于SVM的通风系统故障诊断惩罚系数与核函数系数优化研究[J]. 中国安全生产科学技术, 2019, 15(4): 45-51.
|
|
[1] | WANG Tuanhui, WANG Chao, WU Shunchuan, WANG Qiwei, XU Jianhui. Slope stability prediction and application based on MISSA-SVM model [J]. China Safety Science Journal, 2024, 34(4): 135-144. |
[2] | WANG Junwu, HE Juanjuan, SONG Yinghui, LIU Yipeng, CHEN Zhao, GUO Jingyi. Research on early warning for prefabricated building workers' unsafe behaviors of working at height based on RF-SFLA-SVM [J]. China Safety Science Journal, 2024, 34(3): 1-8. |
[3] | QI Yun, XUE Kailong, WANG Wei, CUI Xinchao, WANG Hongxiang, QI Qingjie. Assessment model of emergency response capability for coal and gas outburst accidents in mines [J]. China Safety Science Journal, 2024, 34(2): 225-230. |
[4] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[5] | CHEN Wei, TIAN Yishuai, ZENG Weihua, GUO Daoyuan, ZHAO Zhuoya. HC-GC human factors analysis model for construction engineering safety accidents caused by heavy rainfall [J]. China Safety Science Journal, 2023, 33(8): 15-23. |
[6] | LI Li, CAO Yukuan, CHEN Yao, ZHAO Ying, QI Jinhao. Flight alert fatigue detection based on multi⁃physiological signals [J]. China Safety Science Journal, 2023, 33(2): 225-232. |
[7] | DENG Lijun, SHANG Wentian, LIU Jian, ZHOU Yukai, SONG Ying. Identification of air door opening and closing stage based on DWT and SVM [J]. China Safety Science Journal, 2023, 33(1): 95-104. |
[8] | YANG Wenchen, ZHOU Yanning, TIAN Bijiang, GUO Fengxiang, HU Chengyu. Traffic accident severity prediction for secondary highways based on cluster analysis and SVM model [J]. China Safety Science Journal, 2022, 32(5): 163-169. |
[9] | DING Xi, ZHAO Xiaodong, WU Xinjun, ZHANG Taili, XU Zhentao. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel [J]. China Safety Science Journal, 2022, 32(3): 194-200. |
[10] | ZHAO Tingsheng, PANG Qizhi, JIANG Wenxi. Safety risk prediction of construction elevator based on database and SVM [J]. China Safety Science Journal, 2021, 31(4): 11-17. |
[11] | LIU Yang, ZHANG Jianjing, LUO Hongsen, YU Haiying, XIANG Bo. Fuzzy-SVM prediction model of subgrade seismic damage based on Bayesian network [J]. China Safety Science Journal, 2021, 31(11): 171-178. |
[12] | ZHENG Xiaoliang, LAI Wenhao, XUE Sheng. Application of MI and SVM in coal and gas outburst prediction [J]. China Safety Science Journal, 2021, 31(1): 75-80. |
[13] | MA Hui, LYU Hang, LUAN Ruibin. Safety early-warning model of prefabricated construction based on spatial cell analysis [J]. China Safety Science Journal, 2020, 30(5): 27-32. |
[14] | XIE Bo, SHI Fuqiang, LIAO Xueyan, MA Sheng, YANG Wei, LU Xiangxiang. Slope displacement prediction method based on EEMD-PSO-ELM model [J]. China Safety Science Journal, 2020, 30(3): 157-162. |
[15] | XIE Zunxian, GUO Yan, PU Tao. Research on BIM-GA-BN based model for evaluating elderly care community construction safety [J]. China Safety Science Journal, 2018, 28(9): 19-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||