China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (9): 41-48.doi: 10.16265/j.cnki.issn1003-3033.2023.09.1143
• Safety engineering technology • Previous Articles Next Articles
JIN Chunling(), JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi
Received:
2023-03-08
Revised:
2023-06-16
Online:
2023-09-28
Published:
2024-03-28
JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM[J]. China Safety Science Journal, 2023, 33(9): 41-48.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.09.1143
Tab.2
Part of rockburst sample data
序号 | Rc/MPa | Rt/MPa | σθ/MPa | Wet | 等级 |
---|---|---|---|---|---|
1 | 118.46 | 3.509 9 | 26.061 2 | 2.89 | Ⅱ |
2 | 52 | 3.7 | 7.5 | 1.3 | Ⅰ |
3 | 306.58 | 13.9 | 105 | 6.38 | Ⅳ |
4 | 175 | 7.25 | 62.5 | 5 | Ⅲ |
5 | 120.05 | 7.41 | 90 | 7.3 | Ⅱ |
6 | 180 | 8.3 | 48.75 | 5 | Ⅲ |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
115 | 225.6 | 17.2 | 91.3 | 7.3 | Ⅳ |
116 | 180 | 8.3 | 48.75 | 5 | Ⅲ |
117 | 196 | 8.3 | 89 | 5 | Ⅲ |
118 | 54.2 | 12.1 | 34.15 | 3.17 | Ⅰ |
119 | 52 | 3.7 | 7.05 | 1.3 | Ⅰ |
120 | 69.7 | 4.8 | 9.57 | 3.8 | Ⅰ |
Tab.3
Parameter range of optimization algorithm
算法 | 基本参数 | 待优化参数 | 参数范围 | |
---|---|---|---|---|
WOA | 最大迭代次数 | 100 | 惩罚因子c 核函数参数g | (0.001,100) (0.001,100) |
初始化种群数 | 10 | |||
训练目标最小误差 | 0.000 01 | |||
PSO | 最大迭代次数 | 100 | 惩罚因子c | (0.001,100) |
种群数量 | 20 | |||
局部学习因子c1 | 2 | 核函数参数g | (0.001,100) | |
全局学习因子c2 | 2 | |||
GA | 最大迭代次数 | 100 | 惩罚因子c | (0.001,100) |
种群数量 | 20 | |||
交叉概率 | 0.5 | 核函数参数g | (0.001,100) | |
变异概率 | 0.01 |
[1] |
冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 2019, 38(4):649-673.
|
|
|
[2] |
田睿, 孟海东, 陈世江, 等. RF-AHP-云模型下岩爆烈度分级预测模型[J]. 中国安全科学学报, 2020, 30(7):166-172.
doi: 10.16265/j.cnki.issn1003-3033.2020.07.025 |
doi: 10.16265/j.cnki.issn1003-3033.2020.07.025 |
|
[3] |
doi: 10.1016/j.tust.2018.08.029 |
[4] |
doi: 10.1016/j.ijmst.2019.06.009 |
[5] |
汤志立, 王雪, 徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报:自然科学版, 2021, 61(6):543-555.
|
|
|
[6] |
靳春玲, 党丹丹, 贡力, 等. IPP-PNN模型在川藏铁路深埋长大隧道岩爆预测中的应用[J]. 铁道科学与工程学报, 2023, 20(3):986-995.
|
|
|
[7] |
张凯, 张科, 李昆. 主元分析-神经网络岩爆等级预测模型[J]. 中国安全科学学报, 2021, 31(3):96-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.014 |
doi: 10.16265/j.cnki.issn1003-3033.2021.03.014 |
|
[8] |
李宁, 王李管, 贾明涛. 基于粗糙集理论和支持向量机的岩爆预测[J]. 中南大学学报:自然科学版, 2017, 48(5):1268-1275.
|
|
|
[9] |
doi: 10.1016/j.tust.2019.04.019 |
[10] |
doi: 10.1016/j.advengsoft.2016.01.008 |
[11] |
周煦桐. 基于神经网络算法的岩爆预测方法研究[D]. 湘潭: 湘潭大学, 2020.
|
|
|
[12] |
冯磊磊. 基于组合赋权和蝴蝶突变模型的岩爆等级评判[D]. 邯郸: 河北工程大学, 2021.
|
|
|
[13] |
doi: 10.1109/72.788640 pmid: 18252602 |
[14] |
丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):2-10.
|
|
|
[15] |
张龙, 彭小明, 熊国良, 等. 基于MSE与PSO-SVM的机车轮对轴承智能诊断方法[J]. 铁道科学与工程学报, 2021, 18(9):2408-2417.
|
|
|
[16] |
doi: 10.1007/s11431-017-9213-0 |
[1] | WANG Tuanhui, WANG Chao, WU Shunchuan, WANG Qiwei, XU Jianhui. Slope stability prediction and application based on MISSA-SVM model [J]. China Safety Science Journal, 2024, 34(4): 135-144. |
[2] | WANG Junwu, HE Juanjuan, SONG Yinghui, LIU Yipeng, CHEN Zhao, GUO Jingyi. Research on early warning for prefabricated building workers' unsafe behaviors of working at height based on RF-SFLA-SVM [J]. China Safety Science Journal, 2024, 34(3): 1-8. |
[3] | QI Yun, XUE Kailong, WANG Wei, CUI Xinchao, WANG Hongxiang, QI Qingjie. Assessment model of emergency response capability for coal and gas outburst accidents in mines [J]. China Safety Science Journal, 2024, 34(2): 225-230. |
[4] | NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces [J]. China Safety Science Journal, 2024, 34(1): 238-246. |
[5] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[6] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[7] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[8] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[9] | DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses [J]. China Safety Science Journal, 2023, 33(4): 100-106. |
[10] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[11] | LI Li, CAO Yukuan, CHEN Yao, ZHAO Ying, QI Jinhao. Flight alert fatigue detection based on multi⁃physiological signals [J]. China Safety Science Journal, 2023, 33(2): 225-232. |
[12] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[13] | QIE Yanhui, GUO Tao, ZHOU Lingzhi, WANG Yu. Prediction of burst pressure of 20 steel elbow with defects based on SVM [J]. China Safety Science Journal, 2023, 33(2): 89-95. |
[14] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
[15] | DENG Lijun, SHANG Wentian, LIU Jian, ZHOU Yukai, SONG Ying. Identification of air door opening and closing stage based on DWT and SVM [J]. China Safety Science Journal, 2023, 33(1): 95-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||