China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (6): 64-72.doi: 10.16265/j.cnki.issn1003-3033.2023.06.0337
• Safety engineering technology • Previous Articles Next Articles
ZHANG Xiliang1,2,3(), JIAO Haokai2, LI Erbao1,2
Received:
2023-02-21
Revised:
2023-05-15
Online:
2023-08-07
Published:
2023-12-28
ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning[J]. China Safety Science Journal, 2023, 33(6): 64-72.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.06.0337
Tab.2
Characteristic values of blasting samples
属性名 | 含义 |
---|---|
炮孔间距Hs | 同排炮孔间的距离 |
炮孔排距Hr | 邻排炮孔间的距离 |
最小抵抗线Wd | 药包中心或重心到最近自由面的最短距离 |
总药量S | 一次爆破使用炸药总量 |
单段最大药量(最大单响药量)Sm | 一次爆破中单个炮孔最大装药量(如未采用逐孔爆破方式, 则该样本特征值为最大单响药量) |
振动测试质点与装药爆破点间的相对垂直距离H | 振动测试质点与装药爆破点间的相对垂直距离 |
水平距离J | 振动测试质点与爆破点之间的水平距离 |
矿石硬度系数UL | 矿石的坚硬程度的表征,用坚固性系数表示 |
围岩硬度系数UK | 围岩的坚硬程度的表征,用坚固性系数表示 |
节理频数G | 矿岩每米长度上节理个数的平均值 |
爆破振动峰值速度v | 特定质点受爆破影响的峰值振动合速度 |
Tab.3
Target domain sample data
Hs/m | Hr/m | Wd/m | S/kg | Sm/kg | H/m | J/m | UL | UK | G | v/(m·s-1) |
---|---|---|---|---|---|---|---|---|---|---|
1.7 | 2.2 | 3.4 | 5 072 | 53 | 21.4 | 136 | 5 | 10 | 1.2 | 0.562 |
1.7 | 2.3 | 3.8 | 5 894 | 65 | 53.6 | 143 | 6 | 11 | 1.7 | 0.458 |
1.8 | 2 | 2.3 | 6 980 | 62 | 19.3 | 121 | 6 | 10 | 1 | 0.854 |
1.8 | 1.9 | 2.7 | 6 548 | 72 | 27.4 | 178 | 6 | 10 | 1.4 | 0.487 |
1.7 | 2.2 | 3 | 5 947 | 49 | 59.4 | 124 | 7 | 10 | 1.7 | 0.393 |
1.8 | 2 | 3.6 | 5 892 | 64 | 20.6 | 104 | 6 | 11 | 2.1 | 1.015 |
1.8 | 2.4 | 4.2 | 5 732 | 59 | 23.5 | 115 | 8 | 11 | 1.7 | 0.753 |
1.9 | 2.1 | 2.6 | 4 938 | 67 | 62.5 | 89 | 7 | 11 | 1.5 | 0.286 |
2 | 1.7 | 3.6 | 6 847 | 73 | 71.4 | 136 | 6 | 12 | 2 | 0.385 |
1.8 | 1.9 | 3.4 | 7 282 | 63 | 34.4 | 124 | 6 | 11 | 1.2 | 1.104 |
1.8 | 2 | 4.5 | 6 879 | 68 | 14.4 | 132 | 5 | 10 | 1.4 | 0.478 |
1.7 | 2.2 | 4.2 | 6 382 | 51 | 34.7 | 135 | 6 | 10 | 1.5 | 1.012 |
Hs/m | Hr/m | Wd/m | S/kg | Sm/kg | H/m | J/m | UL | UK | G | v/(m·s-1) |
---|---|---|---|---|---|---|---|---|---|---|
1.8 | 2.3 | 4.4 | 5 837 | 44 | 52.8 | 95 | 5 | 10 | 1 | 0.865 |
1.9 | 2.3 | 3.4 | 4 973 | 49 | 37.6 | 103 | 5 | 11 | 2.2 | 0.747 |
1.9 | 2 | 3.7 | 6 847 | 57 | 56.6 | 114 | 7 | 11 | 2.7 | 0.479 |
1.9 | 2 | 2.3 | 6 437 | 53 | 37.8 | 102 | 6 | 10 | 1.3 | 0.854 |
1.9 | 2 | 3.8 | 6 271 | 68 | 35.4 | 94 | 7 | 12 | 1.3 | 0.794 |
2.1 | 2.3 | 5.1 | 7 382 | 64 | 21.7 | 88 | 7 | 11 | 1.2 | 0.673 |
2.1 | 2.3 | 4 | 5 893 | 58 | 34.3 | 113 | 5 | 12 | 2 | 0.378 |
1.8 | 2 | 3.9 | 6 347 | 68 | 47.8 | 107 | 6 | 12 | 1.3 | 0.741 |
1.8 | 1.8 | 5.5 | 5 983 | 63 | 74.6 | 121 | 6 | 11 | 1.2 | 0.513 |
1.8 | 2 | 3.7 | 5 372 | 54 | 12.4 | 89 | 5 | 11 | 1.2 | 0.383 |
1.8 | 2 | 3.2 | 5 894 | 51 | 43.7 | 93 | 6 | 11 | 1 | 0.497 |
1.8 | 2 | 2.9 | 6 389 | 58 | 53.8 | 99 | 5 | 11 | 1.4 | 0.854 |
2.5 | 2 | 3.6 | 7 894 | 67 | 27.8 | 117 | 7 | 10 | 1.5 | 0.583 |
1.6 | 2.1 | 4.1 | 6 839 | 74 | 31.2 | 103 | 6 | 12 | 1.3 | 0.568 |
1.7 | 2.2 | 5.2 | 5 932 | 73 | 38.6 | 116 | 5 | 11 | 1.1 | 0.649 |
Tab.4
Part of the source domain sample data
Hs/m | Hr/m | Wd/m | S/kg | Sm/kg | H/m | J/m | UL | UK | G | v/(m·s-1) |
---|---|---|---|---|---|---|---|---|---|---|
3.9 | 2.8 | 3.4 | 2 989 | 12 | 19.4 | 145.7 | 3 | 12 | 2.3 | 0.372 |
3.8 | 2,7 | 2.9 | 2 876 | 11.3 | 18.6 | 111.6 | 4 | 11 | 3.6 | 0.196 |
4 | 3 | 3.5 | 4 072 | 11 | 15.7 | 171.9 | 3 | 14 | 3.1 | 0.436 |
4 | 3 | 3.3 | 4 893 | 12 | 21.9 | 132.5 | 5 | 9 | 2.4 | 0.615 |
4 | 3 | 3.6 | 3 468 | 15 | 5.07 | 193.8 | 6 | 10 | 3.2 | 0.133 |
3.3 | 2.3 | 3.2 | 3 252 | 12.4 | 34.3 | 126.8 | 7 | 1 | 4.8 | 0.511 |
3 | 2 | 3.7 | 3 780 | 11.8 | 5.2 | 135.6 | 4 | 1 | 2.6 | 0.563 |
4 | 3 | 3 | 3 601 | 12.1 | 4,9 | 158.6 | 4 | 1 | 4.2 | 0.419 |
3 | 2 | 3.1 | 4 200 | 11.5 | 8.6 | 177.7 | 3 | 1 | 4.8 | 0.492 |
4 | 3 | 3.5 | 3 624 | 10.3 | 7.1 | 233.2 | 5 | 1 | 2.6 | 0.412 |
3.8 | 3 | 3.7 | 3 648 | 12.5 | 11.6 | 165.9 | 4 | 1 | 2.2 | 0.263 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
4 | 2.4 | 3.5 | 4 500 | 11.8 | 31.8 | 139.8 | 4 | 1 | 5.8 | 0.505 |
3.7 | 3 | 3.2 | 2 380 | 9.2 | 16 | 117.1 | 8 | 6 | 6.4 | 0.236 |
Tab.5
Comparison of real and predicted values of deep blasting data of Chambishi copper mine
样本 序号 | 真实值 (v/m·s-1) | SVR预测值 (v/m·s-1) | Tradaboost-R2 预测值 (v/m·s-1) | LR-Tradaboost 预测值 (v/m·s-1) |
---|---|---|---|---|
1 | 0.513 | 0.839 | 0.548 | 0.537 |
2 | 0.383 | 0.274 | 0.416 | 0.394 |
3 | 0.497 | 0.531 | 0.464 | 0.507 |
4 | 0.854 | 1.025 | 0.873 | 0.869 |
5 | 0.583 | 0.624 | 0.621 | 0.563 |
6 | 0.568 | 0.497 | 0.584 | 0.574 |
7 | 0.649 | 0.726 | 0.675 | 0.692 |
[1] |
郑皓文, 赵根, 胡英国, 等. 基于ACOR-LSSVM算法的爆破振动速度预测[J]. 爆破, 2018, 35(3): 154-158.
|
|
|
[2] |
施建俊, 李庆亚, 张琪, 等. 基于Matlab和BP神经网络的爆破振动预测系统[J]. 爆炸与冲击, 2017, 37(6): 1087-1092.
|
|
|
[3] |
陈秋松, 张钦礼, 陈松, 等. 基于GRA-GEP的爆破峰值速度预测[J]. 中南大学学报:自然科学版, 2016, 47(7): 2441-2447.
|
|
|
[4] |
温廷新, 陈晓宇, 刘天宇, 等. 基于优化IGA-ELM模型的爆破振动特征参量预测研究[J]. 中国安全科学学报, 2017, 27(11): 37-42.
doi: 10.16265/j.cnki.issn1003-3033.2017.11.007 |
doi: 10.16265/j.cnki.issn1003-3033.2017.11.007 |
|
[5] |
庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.
|
|
|
[6] |
张倩, 李明, 王雪松, 等. 一种面向多源领域的实例迁移学习[J]. 自动化学报, 2014, 40(6): 1176-1183.
|
|
|
[7] |
戴文渊. 基于实例和特征的迁移学习算法研究[D]. 上海: 上海交通大学, 2009.
|
|
|
[8] |
高敬阳. 神经网络集成BOOSTING类算法研究[D]. 北京: 北京化工大学, 2012.
|
|
|
[9] |
李号号. 基于实例的迁移学习技术研究及应用[D]. 武汉: 武汉大学, 2018.
|
|
|
[10] |
何金虎. 基于迁移学习的软件缺陷预测模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
|
[11] |
徐阳, 张忠伟, 刘明. 利用信息交互最优权重改进神经网络的方法[J]. 吉林大学学报:信息科学版, 2019, 37(1): 107-112.
|
|
|
[12] |
|
[13] |
唐贤伦, 李洋, 李鹏, 等. 多智能体粒子群优化的SVR模型预测控制[J]. 控制与决策, 2014, 29(4): 593-598.
|
|
|
[14] |
邵良杉, 赵琳琳. 爆破振动对民房破坏的鱼骨图-SVM预测模型[J]. 中国安全科学学报, 2014, 24(8): 56-61.
|
|
|
[15] |
张倩, 李海港, 李明, 等. 基于多源动态TrAdaBoost的实例迁移学习方法[J]. 中国矿业大学学报, 2014, 43(4): 713-720.
|
|
|
[16] |
赵兴东. 谦比希矿深部开采隔离矿柱稳定性分析[J]. 岩石力学与工程学报, 2010, 29(增1): 2616-2622.
|
|
|
[17] |
龙明盛. 迁移学习问题与方法研究[D]. 北京: 清华大学, 2014.
|
|
|
[18] |
黄强. Web下的Python3编程环境分析[J]. 电脑编程技巧与维护, 2018(12): 21-22.
|
|
|
[19] |
刘志凯. 基于Web的Python3编程环境[J]. 计算机系统应用, 2015, 24(7): 236-239.
|
|
|
[20] |
曹晓峰. 基于Vis/NIR高光谱和机器视觉技术的冬枣分级方法研究[D]. 咸阳: 西北农林科技大学, 2018.
|
|
[1] | NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces [J]. China Safety Science Journal, 2024, 34(1): 238-246. |
[2] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[3] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[4] | GU Yingkui, WANG Yuanjin, SHI Changwu. Remaining useful life prediction method of rolling bearing based on EWM and SVR [J]. China Safety Science Journal, 2023, 33(9): 49-55. |
[5] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[6] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[7] | WANG Wei, LIANG Ran, QI Yun, JIA Baoshan, WU Zewei. Prediction model of coal spontaneous combustion risk based on PSO-BPNN [J]. China Safety Science Journal, 2023, 33(7): 127-132. |
[8] | DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses [J]. China Safety Science Journal, 2023, 33(4): 100-106. |
[9] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[10] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[11] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
[12] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[13] | CHEN Yongqiang, WU Zhipeng, YANG Xiangjuan, CHEN Pu, SUN Shuli. Review on regional seismic analysis software [J]. China Safety Science Journal, 2022, 32(9): 126-136. |
[14] | ZHANG Kai, ZHANG Ke. Prediction study on slope stability based on LightGBM algorithm [J]. China Safety Science Journal, 2022, 32(7): 113-120. |
[15] | LIU Kun, JIAO Yubo, ZHANG Xiaoming, CHEN Xiaoyu, JIANG Chaozhe. Test of railway train drivers' stress by using ECG signal [J]. China Safety Science Journal, 2022, 32(6): 31-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||