China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (9): 126-136.doi: 10.16265/j.cnki.issn1003-3033.2022.09.2808
• Technology and engineering of disaster prevention and mitigation • Previous Articles Next Articles
CHEN Yongqiang(), WU Zhipeng, YANG Xiangjuan, CHEN Pu, SUN Shuli
Received:
2022-03-14
Revised:
2022-07-11
Online:
2022-10-19
Published:
2023-03-28
CHEN Yongqiang, WU Zhipeng, YANG Xiangjuan, CHEN Pu, SUN Shuli. Review on regional seismic analysis software[J]. China Safety Science Journal, 2022, 32(9): 126-136.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.09.2808
[1] |
胡聿贤. 地震工程学[M]. 北京: 地震出版社, 2006:1-3.
|
[2] |
马强. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所, 2008.
|
|
|
[3] |
刘赫奕, 宋晋东, 李山有. ShakeAlert:美国西海岸地震预警系统发展[J]. 地震工程与工程振动, 2020, 40(6):61-70.
|
|
|
[4] |
张红才, 金星, 马强, 等. 福建省“九五”地震监测台网台站震级校正及单台震级应用研究[J]. 华南地震, 2010, 30(3):27-36.
|
|
|
[5] |
孔韩东, 边银菊, 刘瑞丰, 等. 地震定位方法研究进展[J]. 地震地磁观测与研究, 2017, 38(4): 81-92.
|
|
|
[6] |
钟菊芳, 袁峰. 震源参数对合成时程持时的影响分析[J]. 防灾减灾工程学报, 2019, 39(5):733-747.
|
|
|
[7] |
李磊. 滑坡堆积体的地震波动力响应研究[D]. 成都: 成都理工大学, 2010.
|
|
|
[8] |
胡才博, 蔡永恩. 地形和断层破裂方式对地震波传播的影响[C]. 中国地球物理学会第29届年会, 2013:281.
|
[9] |
刘启方. 基于运动学和动力学震源模型的近断层地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2005.
|
|
|
[10] |
陈永强, 吴志鹏, 周惟於. 基于机器学习和动力学计算融合的地震定位方法与设备:中国, CN113341459A[P]. 2021-09-03.
|
[11] |
张永刚. 地震波场数值模拟方法[J]. 石油物探, 2003, 42(2):143-148.
|
|
|
[12] |
李信富, 李小凡, 张美根. 地震波数值模拟方法研究综述[J]. 防灾减灾工程学报, 2007, 27(2):241-248.
|
|
|
[13] |
王延光, 李振春, 穆志平, 等. 一种适于强横向变速的高阶差分正演模拟方法[J]. 石油大学学报:自然科学版, 2002, 26(5):37-39.
|
|
|
[14] |
裴正林. 三维各向同性介质弹性波方程交错网格高阶有限差分法模拟[J]. 石油物探, 2005, 44(4):308-315.
|
|
|
[15] |
裴正林. 三维各向异性介质中弹性波方程交错网格高阶有限差分法数值模拟[J]. 石油大学学报:自然科学版, 2004, 28(5):23-29.
|
|
|
[16] |
裴正林. 三维双相各向异性介质弹性波方程交错网格高阶有限差分法模拟[J]. 中国石油大学学报:自然科学版, 2006, 30(2):16-20.
|
|
|
[17] |
周辉, 徐世浙, 刘斌, 等. 各向异性介质中波动方程有限元法模拟及其稳定性[J]. 地球物理学报, 1997, 40(6):833-841.
|
|
|
[18] |
王朝令, 刘争平, 黄云艳, 等. 隧道地震预报波场的有限元数值模拟[J]. 吉林大学学报:地球科学版, 2014, 44(4):1369-1381.
|
|
|
[19] |
侯安宁, 何樵登. 各向异性介质中弹性波传播特征的伪谱法模拟研究[J]. 石油物探, 1995, 34(2):36-45.
|
|
|
[20] |
刘洋楚, 李承楚. 双相各向异性介质中弹性波传播伪谱法数值模拟研究[J]. 地震学报, 2000, 22(2):132-138.
|
|
|
[21] |
doi: 10.1190/1.1443227 |
[22] |
刘福田. 震源位置和速度结构的联合反演(Ⅰ):理论和方法[J]. 地球物理学报, 1984, 27(2):167-175.
|
|
|
[23] |
赵德明, 庞锐, 王海波. 微震震源定位算法优化研究及应用[J]. 计算机技术与发展, 2021, 31(7):209-214.
|
|
|
[24] |
|
[25] |
doi: 10.1029/94JB00577 |
[26] |
doi: 10.1785/0120000006 |
[27] |
彭钊, 邵永谦, 李赫, 等. 适用小样本情况的地震检测机器学习模型[J]. 大地测量与地球动力学, 2021, 41(7):765-770.
|
|
|
[28] |
胡安冬, 张海明. 机器学习在地震紧急预警系统震级预估中的应用[J]. 地球物理学报, 2020, 63(7):2617-2626.
|
|
|
[29] |
袁爱璟, 王伟君, 彭菲, 等. 机器学习在地震预测中的应用进展[J]. 地震, 2021, 41(1):51-66.
|
|
|
[30] |
万永革, 李鸿吉. 遗传算法在确定震源位置中的应用[J]. 地震地磁观测与研究, 1995, 16(6):1-7.
|
|
|
[31] |
周民都, 张元生, 张树勋. 遗传算法在地震定位中的应用[J]. 西北地震学报, 1999, 21(2):167-171.
|
|
|
[32] |
doi: 10.1785/0120070002 |
[33] |
doi: 10.1038/s41598-019-57005-6 |
[34] |
陈宇雄. 全卷积神经网络地震定位方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2019.
|
|
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
TESSERAL Technologies Inc. TESSERAL[EB/OL]. [2022-05-14]. http://www.tesseral-geo.com.
|
[40] |
|
[41] |
Federal Emergency Management Agency. Hazus[EB/OL]. [2022-05-14]. https://www.fema.gov/flood-maps/products-tools/hazus.
|
[42] |
北京港震科技. CSDP[EB/OL]. [2022-05-14]. http://www.geolight.com.cn.
|
[43] |
杨陈, 黄志斌, 廖诗荣, 等. 全国自动地震速报系统介绍[J]. 地震地磁观测与研究, 2010, 31(5):158-161.
|
|
|
[44] |
申光宪. 边界元法[M]. 北京: 机械工业出版社, 1998:10-12.
|
[45] |
杜庆华. 边界积分方程方法:边界元法[M]. 北京: 高等教育出版社, 1989:1-3.
|
[46] |
|
[47] |
|
[48] |
|
[49] |
doi: 10.1115/1.2893766 |
[50] |
doi: 10.1016/S0955-7997(02)00082-6 |
[51] |
黄君豪, 陈永强. 基于几何指标的边界元法单元积分精度评估和修正[J]. 清华大学学报:自然科学版, 2019, 59(11):953-960.
|
|
|
[52] |
doi: 10.1016/j.enganabound.2019.12.001 |
[53] |
doi: 10.1137/0907058 |
[54] |
|
[55] |
doi: 10.1214/aoms/1177729893 |
[56] |
|
[57] |
doi: 10.1115/1.3111075 |
[58] |
doi: 10.1007/s00158-002-0269-0 |
[59] |
doi: 10.12989/sem.2006.23.6.675 |
[1] | NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces [J]. China Safety Science Journal, 2024, 34(1): 238-246. |
[2] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[3] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[4] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[5] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[6] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[7] | DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses [J]. China Safety Science Journal, 2023, 33(4): 100-106. |
[8] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[9] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[10] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
[11] | WANG Cheng, QIAN Chengeng, ZHANG Wenyao, GU Gongtian, CUI Yangyang. Development and applications of large-scale and high order accurate simulation software for hazardous chemical explosion [J]. China Safety Science Journal, 2022, 32(9): 20-28. |
[12] | CHEN Bin, WANG Xianghan, YANG Mei, QIU Xiaogang. Review on development of simulation software technologies for emergency rescue in complex disaster scenarios [J]. China Safety Science Journal, 2022, 32(9): 168-175. |
[13] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[14] | LIN Zhiyang, LIU Zheng, FANG Zhiming, LIU Jialin, ZHANG Peng, JIANG Rui. Review of pedestrian and traffic evacuation simulation software [J]. China Safety Science Journal, 2022, 32(9): 100-110. |
[15] | ZHANG Kai, ZHANG Ke. Prediction study on slope stability based on LightGBM algorithm [J]. China Safety Science Journal, 2022, 32(7): 113-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||