China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (7): 229-238.doi: 10.16265/j.cnki.issn1003-3033.2024.07.2092
• Technology and engineering of disaster prevention and mitigation • Previous Articles Next Articles
JIANG Song1,2,3(), LI Yanbo1, HE Xuqian1, HE Runfeng1,2, ZHANG Chao1,4, ZHANG Cunliang1,5
Received:
2024-01-14
Revised:
2024-04-18
Online:
2024-07-28
Published:
2025-01-28
CLC Number:
JIANG Song, LI Yanbo, HE Xuqian, HE Runfeng, ZHANG Chao, ZHANG Cunliang. Intelligent identification of landslide disaster based on deep learning of UAV images[J]. China Safety Science Journal, 2024, 34(7): 229-238.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.07.2092
Table 1
Checkpoint horizontal accuracy statisticsm
序号 | 测试点 | 像控点 | ||||
---|---|---|---|---|---|---|
X | Y | x | y | H | ||
1 | 545 937.520 | 3 753 813.645 | 1 322.815 | 545 937.524 | 3 753 813.639 | 1 322.793 |
2 | 545 661.386 | 3 753 701.391 | 1 284.536 | 545 661.377 | 3 753 701.379 | 1 284.505 |
3 | 545 754.316 | 3 753 480.454 | 1 225.059 | 545 754.308 | 3 753 480.444 | 1 225.031 |
4 | 546 031.346 | 3 753 592.878 | 1 351.895 | 546 031.338 | 3 753 592.870 | 1 351.869 |
Table 3
Landslide area feature extraction
特征类别 | 名称 | 代表含义 | 取值范围 |
---|---|---|---|
光谱特征 | L1-R | 红色光谱 | [32.22,215.45] |
L2-G | 绿色光谱 | [36.81,217.2] | |
L3-B | 蓝色光谱 | [29.76,214.56] | |
Brightness | 亮度 | [94.96,196.02] | |
Max_diff | 最大化差异特征 | [0.227,2.247] | |
形状特征 | r | 长宽比 | [1.003,22.41] |
纹理特征 | GLCM | 灰度共生矩阵 | [0.095,0.555] |
地形特征 | L4-Aspect | 坡向 | [54.89,240.24] |
L5-Curv | 曲率 | [97.79,113.41] | |
L6-Sr | 地形起伏度 | [53.36,255] | |
L7-Slope | 坡度 | [104.79,226.08] |
Table 4
Deep residual network model structural parameters
模型结构 | 层数 | 操作 | 尺寸 | 步长 | 边缘填充 | 输出尺寸 |
---|---|---|---|---|---|---|
输入层 | Input_1 | 输入影像数据 | 3×3/1×1 | 1 | — | 1 024×1 024×3 |
Input_2 | 输入地形数据 | 3×3/1×1 | 1 | — | 1 024×1 024×4 | |
编码层 | Level_1 | 卷积 | 3×3/1×1 | 1 | 2/0 | 1 024×1 024×64 |
池化 | 2×2 | 2 | 0 | 512×512×64 | ||
Level_2 | 卷积 | 3×3/1×1 | 1 | 2/0 | 512×512×128 | |
池化 | 2×2 | 2 | 0 | 256×256×128 | ||
Level_3 | 卷积 | 3×3/1×1 | 1 | 2/0 | 256×256×256 | |
池化 | 2×2 | 2 | 0 | 128×128×256 | ||
Level_4 | 卷积 | 3×3/1×1 | 1 | 2/0 | 128×128×512 | |
池化 | 2×2 | 2 | 0 | 64×64×512 | ||
Level_5 | 卷积 | 3×3/1×1 | 1 | 2/0 | 64×64×1024 | |
解码层 | Level_6 | 上采样 | 2×2 | 2 | 0 | 128×128×512 |
跳跃连接 | — | — | — | 128×128×1024 | ||
卷积 | 3×3/1×1 | 1 | 2/0 | 128×128×512 | ||
Level_7 | 上采样 | 2×2 | 2 | 0 | 256×256×256 | |
跳跃连接 | — | — | — | 256×256×512 | ||
卷积 | 3×3/1×1 | 1 | 2/0 | 256×256×256 | ||
Level_8 | 上采样 | 2×2 | 2 | 0 | 512×512×128 | |
跳跃连接 | — | — | — | 512×512×256 | ||
卷积 | 3×3/1×1 | 1 | 2/0 | 512×512×128 | ||
Level_9 | 上采样 | 2×2 | 2 | 0 | 1 024×1 024×64 | |
跳跃连接 | — | — | — | 1 024×1 024×128 | ||
卷积 | 3×3/1×1 | 1 | 2/0 | 1 024×1 024×64 | ||
输出层 | Output_10 | 输出数据 | 1×1 | 1 | 0 | 1 024×1 024×1 |
[1] |
曹永胜, 解治宇, 于庆磊, 等. 大孤山露天矿西北帮边坡稳定性分析及治理措施研究[J]. 金属矿山, 2020(1): 141-150.
|
|
|
[2] |
国家矿山安全监察局. 甘肃白银泓胜煤业有限责任公司(露天煤矿)“7·23”重大边坡坍塌事故案例[EB/OL]. (2023-09-28). https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/sgcc/sgalks/.
|
[3] |
国家矿山安全监察局. 内蒙古阿拉善新井煤业有限公司露天煤矿“2·22”特别重大坍塌事故案例[EB/OL]. (2023-09-28). https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/sgcc/sgalks/.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
张蕴灵, 傅宇浩, 孙雨, 等. 结合深度神经网络的高分辨遥感影像滑坡检测[J]. 公路, 2021, 66(5): 188-194.
|
|
|
[8] |
吴琪, 周创兵, 黄发明, 等. 基于双重注意力机制的滑坡识别方法优化[J]. 地质科技通报, 2022, 41(2): 246-253.
|
|
|
[9] |
巨袁臻, 许强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报:信息科学版, 2020, 45(11): 1747-1755.
|
|
|
[10] |
席思远, 张西童, 王宁, 等. 倾斜摄影设备选型及像控点布设对高精度实景三维模型重建的影响[J]. 测绘通报, 2022(10): 86-92.
doi: 10.13474/j.cnki.11-2246.2022.0299 |
doi: 10.13474/j.cnki.11-2246.2022.0299 |
|
[11] |
王朝辉, 吴昊, 孟将. 无人机倾斜摄影像控布点方案研究及精度分析[J]. 测绘通报, 2021(5):102-105,110.
doi: 10.13474/j.cnki.11-2246.2021.0151 |
doi: 10.13474/j.cnki.11-2246.2021.0151 |
|
[12] |
汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014, 69(9): 1305-1325.
doi: 10.11821/dlxb201409006 |
doi: 10.11821/dlxb201409006 |
|
[13] |
豆红强, 黄思懿, 简文彬, 等. 基于遥感数据的闽东南山区公路滑坡快速识别技术研究[J]. 自然灾害学报, 2023, 32(1): 217-227.
|
|
|
[14] |
卢冰, 李灿林, 冯薛龙, 等. 基于改进SRResNet深度学习网络的低照度图像超分辨率重建方法[J]. 科学技术与工程, 2022, 22(27): 12 045-12 052.
|
|
|
[15] |
刘佳, 伍宇明, 高星, 等. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7): 1275-1285.
doi: 10.12082/dqxxkx.2022.210704 |
|
|
[16] |
|
[1] | JIN Lianghai, WANG Shuqing, WANG Xinyu. Research on multimodal emotion characteristics based on short video of rainstorm disaster [J]. China Safety Science Journal, 2024, 34(7): 219-228. |
[2] | WEI Dezhi, DU Zhiyong, TENG Chunyang, XIN Wutian, LI Zekun. Study on safety monitoring technology for chain fracture in crushing station of open-pit mine [J]. China Safety Science Journal, 2023, 33(S2): 170-175. |
[3] | ZHAO Guanghui, ZHAO Peng, HU Jinliang. Video detection algorithm based on semantic segmentation for conveyor belt deviation [J]. China Safety Science Journal, 2023, 33(S1): 81-84. |
[4] | LIN Qing, YAO Junming, LIANG Wei, YANG Fang, LIAO Chunyan, WANG Youchun. Residual life prediction of gas generator set based on deep learning [J]. China Safety Science Journal, 2023, 33(9): 113-121. |
[5] | WANG Jinjiang, GUAN Pengting, CHEN Zhuo, GE Weifeng, JU Qian. Intelligent warning of risk during maintenance operations based on deep learning [J]. China Safety Science Journal, 2023, 33(10): 16-22. |
[6] | LI Hai, SUN Peng. Research on fire image recognition based on scientific knowledge graph [J]. China Safety Science Journal, 2023, 33(10): 147-159. |
[7] | MA Qinglu, SUN Xiao, TANG Xiaoyao, LU Jiaping, DUAN Xuefeng. Optimization method for tunnel initial fire detection based on YOLOv5s algorithm [J]. China Safety Science Journal, 2023, 33(10): 214-223. |
[8] | HUANG Zhenzhen, XIAO Shuo, WANG Yu, CHEN Wei, WANG Shengzhi, JIANG Haifeng. Human activity recognition model of railway workers [J]. China Safety Science Journal, 2022, 32(6): 17-22. |
[9] | ZHANG Meng, HAN Yu, LIU Zefeng. Detection method of high-altitude safety protective equipment for construction workers based on deep learning [J]. China Safety Science Journal, 2022, 32(5): 140-146. |
[10] | GUO Wei, YUAN Hongyong, XUE Ming, WEI Pingyan. Flood inundation area extraction method of SAR images based on deep learning [J]. China Safety Science Journal, 2022, 32(4): 177-184. |
[11] | ZHAO Liang, SUN Kuiyuan, HAN Baohu, AN Wenli, LI Guoqiang. Research on safety management of coal preparation plants based on artificial intelligence video analysis [J]. China Safety Science Journal, 2021, 31(S1): 19-23. |
[12] | DUAN Zhaobin, DU Hailong, ZHANG Peng. Feature extraction of QAR data based on QAR2Vec model [J]. China Safety Science Journal, 2021, 31(1): 145-152. |
[13] | ZHAO Xinran, ZHANG Qi, WANG Weidong, XU Zhiqing. Image detection method of combustible dust cloud [J]. China Safety Science Journal, 2020, 30(4): 8-13. |
[14] | XU Dan, DAI Yong, JI Junhong. Research on driver behavior recognition method based on convolutional neural network [J]. China Safety Science Journal, 2019, 29(10): 12-17. |
[15] | TONG Ruipeng, ZHANG Yanwei. Integration between artificial intelligence technologies for miners' unsafe behavior identification [J]. China Safety Science Journal, 2019, 29(1): 7-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||