China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (12): 120-128.doi: 10.16265/j.cnki.issn1003-3033.2024.12.0350
• Safety engineering technology • Previous Articles Next Articles
LI Xian1(), JIAO Yu1,**(
), SHI Danda1, WU Jianjun2, KANG Yutao1
Received:
2024-07-14
Revised:
2024-09-18
Online:
2024-12-28
Published:
2025-06-28
Contact:
JIAO Yu
CLC Number:
LI Xian, JIAO Yu, SHI Danda, WU Jianjun, KANG Yutao. Accident injuries model of ship repair and building enterprises based on binary Logistic regression[J]. China Safety Science Journal, 2024, 34(12): 120-128.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.12.0350
Table 2
Descriptive statistics and encoding results for categorical variables
变量维度 | 变量名称 | 编码=类别(频数,占比/%) | 变量维度 | 变量名称 | 编码=类别(频数,占比/%) |
---|---|---|---|---|---|
事故伤害 | 人员伤害 | 1=人员伤害(1 078, 76.40) 0=无人员伤害(333, 23.60) | 时间 | 星期 | 1=星期三(233, 16.51) 2=星期五(217, 15.38) 3=星期六(217, 15.38) 4=星期四(205, 14.53) 5=星期二(200, 14.17) 6=星期一(182, 12.90) 7=星期日(157, 11.13) |
企业 | 用工形式 | 1=非合同制(1 206, 85.47) 2=合同制(205, 14.53) | |||
人员规模 | 1=[1 000, +∞)(862, 61.09) 2=[0, 1 000)(549, 38.91) | 季节 | 1=第二季度(412, 29.20) 2=第三季度(370, 26.22) 3=第一季度(327, 23.18) 4=第四季度(302, 21.40) | ||
是否工作日 | 1=是(1 007, 71.37) 0=否(404, 28.63) | ||||
危险作业 审批项 | 1=否(1 130, 80.09) 0=是(281, 19.91) | 高峰事故时刻 | 1=[8, 12) & [14,18)(1 024, 72.57) 0=其他(387, 27.43) | ||
人员 | 性别 | 1=男(1 331, 94.33) 0=女(80, 5.67) | 环境 | 天气 | 1=晴(876, 62.08) 2=雨雪雾霾(283, 20.06) 3=阴(252, 17.86) |
婚姻状态 | 1=已婚(1 219, 86.39) 0=未婚(192, 13.61) | 风向 | 1=东南风(377, 26.72) 2=西北风(197, 13.96) 3=南风(192, 13.61) 4=北风(173, 12.26) 5=东北风(172, 12.19) 6=东风(152, 10.77) 7=西南风(90, 6.38) 8=西风(58, 4.11) | ||
受教育水平 | 1=初中(966, 68.46) 2=高中(287, 20.34) 3=专科(69, 4.89) 4=小学(53, 3.76) 5=本科及以上(36, 2.55) | ||||
新工人 | 1=否(1 148, 81.36) 0=是(263, 18.64) | 风力 | 1=3级(466, 33.03) 2=5级(290, 20.55) 3=4级(278, 19.70) 4=2级(229, 16.23) 5=6级+(91, 6.45) 6=1级(57, 4.04) | ||
事故 | 事故性质 | 1=责任事故(1 029, 72.93) 0=非责任事故(382, 27.07) | 空间 | 事故地点 | 1=内场(468, 33.17) 2=船舶(406, 28.77) 3=码头或坞(390, 27.64) 4=车间(132, 9.36) 5=厂区外(15, 1.06) |
事故类型 | 1=物体打击(462, 32.74) 2=其他伤害(374, 26.51) 3=机械伤害(162, 11.48) 4=高处坠落(144, 10.21) 5=起重伤害(102, 7.23) 6=合并类别(167, 11.83) |
Table 3
Analysis results of univariate variables and collinearity diagnostics
变量名称 | 卡方值 | 自由度 | 显著性 | VIF |
---|---|---|---|---|
年龄 | — | — | 0.140 | 1.757 |
工龄 | — | — | 0.025* | 2.089 |
本工种工龄 | — | — | 0.047* | 1.598 |
正弦温度 | — | — | 0.030* | 1.415 |
危险作业审批项 | 63.308 | 1 | 0.000* | 1.047 |
用工形式 | 7.722 | 1 | 0.005* | 1.015 |
人员规模 | 0.685 | 1 | 0.408 | 1.197 |
事故地点 | 31.121 | 4 | 0.000* | 1.045 |
事故性质 | 1.019 | 1 | 0.313 | 1.168 |
事故类型 | 59.263 | 5 | 0.000* | 1.018 |
性别 | 9.087 | 1 | 0.003* | 1.057 |
婚姻状态 | 0.944 | 1 | 0.331 | 1.401 |
新老工人 | 2.132 | 1 | 0.144 | 1.071 |
教育水平 | 16.520 | 4 | 0.002* | 1.042 |
季节 | 13.882 | 3 | 0.003* | 1.330 |
工作日与休息日 | 6.694 | 1 | 0.010* | 1.073 |
星期 | 14.870 | 6 | 0.021* | 1.069 |
高峰事故时刻 | 4.788 | 1 | 0.029* | 1.014 |
风级 | 15.231 | 5 | 0.009* | 1.030 |
风向 | 23.545 | 7 | 0.001* | 1.086 |
天气 | 3.542 | 2 | 0.170 | 1.042 |
Table 5
Binary logistic regression analysis results for SRBE accident casualty
变量维度 | 变量名称 | 变量类别 | 回归系数 | 标准误差 | df | Sig. | OR | OR的 95% | |
---|---|---|---|---|---|---|---|---|---|
企业 | 用工形式 | 0.355 | 0.181 | 1 | 0.047 | 1.427 | 1.000 | 2.036 | |
危险作业审批项 | 1.177 | 0.160 | 1 | 0.000 | 3.246 | 2.373 | 4.441 | ||
人员 | 性别 | 0.956 | 0.264 | 1 | 0.000 | 2.602 | 1.550 | 4.368 | |
工龄 | -0.030 | 0.013 | 1 | 0.026 | 0.970 | 0.945 | 0.996 | ||
受教育 程度 | 初中a | 4 | 0.001 | ||||||
高中 | -0.478 | 0.170 | 1 | 0.005 | 0.620 | 0.444 | 0.866 | ||
专科 | -0.907 | 0.289 | 1 | 0.002 | 0.404 | 0.229 | 0.710 | ||
大学 | -0.965 | 0.432 | 1 | 0.025 | 0.381 | 0.163 | 0.888 | ||
时间 | 季节 | 第二季度a | 3 | 0.001 | |||||
第一季度 | -0.499 | 0.184 | 1 | 0.007 | 0.607 | 0.424 | 0.871 | ||
高峰事故时刻 | 0.376 | 0.166 | 1 | 0.023 | 1.457 | 1.053 | 2.017 | ||
是否工作日 | 0.356 | 0.145 | 1 | 0.015 | 1.462 | 1.073 | 1.898 | ||
事故 | 事故类型 | 物体打击a | 5 | 0.000 | |||||
其他伤害 | -0.825 | 0.176 | 1 | 0.000 | 0.438 | 0.310 | 0.619 | ||
合并类别 | -0.477 | 0.227 | 1 | 0.035 | 0.621 | 0.398 | 0.968 | ||
机械伤害 | 0.616 | 0.303 | 1 | 0.042 | 1.851 | 1.022 | 3.352 | ||
空间 | 事故地点 | 内场a | 4 | 0.000 | |||||
船舶 | 0.383 | 0.185 | 1 | 0.039 | 1.467 | 1.020 | 2.108 | ||
码头或坞 | -0.353 | 0.169 | 1 | 0.036 | 0.702 | 0.504 | 0.978 | ||
车间 | 0.852 | 0.297 | 1 | 0.004 | 2.345 | 1.310 | 4.198 | ||
厂区外 | -1.611 | 0.733 | 1 | 0.028 | 0.200 | 0.047 | 0.840 | ||
环境 | 正弦温度 | 0.058 | 0.009 | 1 | 0.000 | 1.060 | 1.041 | 1.079 | |
常数项 | -0.293 | 0.450 | 1 | 0.515 | 0.746 |
Table 6
Results for binning of continuous variables
变量名称 | 分箱方式 | 编码=类别(频数,占比/%) |
---|---|---|
自定义 | 1=熟练工(1 240, 87.88) 0=新手(171, 12.12) | |
等距 | 1=0~10(909, 64.42) 2=10~20(313, 22.18) 3=20~30(157, 11.13) 4=30~40(33, 2.27) | |
自定义 | 1=非高温(1 353, 95.89) 0=高温(58, 4.11) | |
等距 | 1=20~30(603, 42.74) 2=10~20(379, 26.86) 3=0~10(252, 17.86) 4=30~40(125, 8.86) 5=小于0(52, 3.69) |
Table 7
Results of the comparison between binned variable combination models
编号 | 模型 | H-L检验p值 | -2LL | AUC |
---|---|---|---|---|
1 | 0.407 | 1 102.038 | 0.852 | |
2 | 0.273 | 1 108.014 | 0.850 | |
3 | 0.273 | 1 108.014 | 0.850 | |
4 | 0.252 | 1 116.673 | 0.847 | |
5 | 0.082 | 1 121.395 | 0.845 | |
6 | 0.082 | 1 121.395 | 0.845 | |
7 | 0.079 | 1 107.755 | 0.850 | |
8 | 0.559 | 1 111.497 | 0.848 | |
9 | 0.559 | 1 111.497 | 0.848 |
[1] |
王颖丽, 夏昭林, 庄惠民. 某造船企业1994—2005年职业伤害流行病学调查[J]. 环境与职业医学, 2008, 25(1): 49-50.
|
|
|
[2] |
丁永明, 朱靳良, 傅华. 造船企业工伤事故调查[J]. 中国工业医学杂志, 2000, 13(5): 284-285.
|
|
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
蔡玉良, 于淳, 孙旭, 等. 我国沿海船舶事故特征及影响因素分析[J]. 中国航海, 2021, 44(2): 45-52.
|
|
|
[9] |
王磊, 吕璞, 林永杰. 高速公路交通事故影响因素分析及伤害估计[J]. 中国安全科学学报, 2016, 26(3): 86-90.
|
|
|
[10] |
于洪霞, 季建华, 李兴. 一种基于Logistic回归的全损飞行事故分析与预测[J]. 中国安全科学学报, 2010, 20(3): 34-38.
|
|
|
[11] |
GB/T 6441—1986, 企业职工伤亡事故分类标准[S].
|
GB/T 6441-1986, Classification for casualty accidents of enterprise staff and workers[S].
|
|
[12] |
焦宇, 李显, 刘琦, 等. 2005—2019年我国重特大安全生产事故特征分析[J]. 安全与环境学报, 2021, 21(6): 2875-2882.
|
|
|
[13] |
李显, 焦宇, 陈文涛, 等. 船舶修造企业火灾事故特征挖掘与致因分析[J]. 中国安全科学学报, 2024, 34(3): 29-38.
doi: 10.16265/j.cnki.issn1003-3033.2024.03.0368 |
doi: 10.16265/j.cnki.issn1003-3033.2024.03.0368 |
|
[14] |
|
[15] |
王卫杰, 沈轩霆, 王贵彬, 等. 电动自行车骑行者事故伤害程度影响因素分析[J]. 中国安全科学学报, 2019, 29(2): 20-25.
|
|
|
[16] |
戢晓峰, 李德林, 杨文臣. 山区二级公路交通事故致因的时间演化机制[J]. 中国安全科学学报, 2019, 29(4): 31-36.
doi: 10.16265/j.cnki.issn1003-3033.2019.04.006 |
doi: 10.16265/j.cnki.issn1003-3033.2019.04.006 |
|
[17] |
李海萍, 龙志航, 杨滋恒, 等. 基于Logistic模型的四川凉山州森林火灾风险分析[J]. 安全与环境学报, 2021, 21(2): 498-505.
|
|
|
[18] |
QX/T 280—2015, 极端高温监测指标[S].
|
QX/T 280-2015, Monitoring indices of high temperature extremes[S].
|
[1] | SUN Shimei, ZHANG Jiayan. Research on influencing factors of subway station fire evacuation based on 24Model-D-ISM [J]. China Safety Science Journal, 2024, 34(4): 153-159. |
[2] | XU Xiaomin, LI Wei, HUANG Shengzhong. Temporal and spatial dynamics and influencing factors analysis of environmental risk factors in Yellow River basin [J]. China Safety Science Journal, 2024, 34(3): 206-215. |
[3] | LI Xian, JIAO Yu, CHEN Wentao, SHI Danda, KANG Yutao. Feature mining and causative analysis of fire accidents in ship repair and building enterprises [J]. China Safety Science Journal, 2024, 34(3): 29-38. |
[4] | LIU Juan, YE Ran, WANG Jinghong. Simulation analysis of evacuees competitive behavior based on system dynamics [J]. China Safety Science Journal, 2024, 34(11): 58-65. |
[5] | LI Quansheng, YAN Jie, WANG Bin, ZHANG Yu. Wettability of dust from blast piles in Ha'erwusu open-pit coal mine and its influencing factors [J]. China Safety Science Journal, 2023, 33(S2): 7-12. |
[6] | WANG Guilin, ZHAO Changhai, SONG Delin. Research on influencing factors of air pollution in open-pit mines based on environmental safety improvement [J]. China Safety Science Journal, 2023, 33(S2): 77-84. |
[7] | ZHANG Mingfang, MA Yanhua, MA Yong. Influencing factors on severity of vehicle-pedestrian conflict at unsignalized intersections [J]. China Safety Science Journal, 2023, 33(8): 190-197. |
[8] | LIU Qiyuan, LIU Jincheng. Regional resilience evaluation methods and influencing factors from perspective of natural disasters [J]. China Safety Science Journal, 2023, 33(5): 174-181. |
[9] | CHENG Lianhua, ZHAO Xudong, HAO Jie. Research on influencing factors of construction workers' safety competency integrating ISM and G1 method [J]. China Safety Science Journal, 2023, 33(4): 61-68. |
[10] | LI Congying, ZHANG Haoxing, TAN Qian, LI Wei, CHENG Hua, WANG Qi. Research on traffic violations interval time based on Cox proportional hazard regression model [J]. China Safety Science Journal, 2023, 33(3): 126-133. |
[11] | LIU Lanjian, DONG Yongqiang. Research on resilience of transportation infrastructure: origin development, and future [J]. China Safety Science Journal, 2023, 33(11): 45-51. |
[12] | ZHANG Boxu. Grey correlation analysis of railway accidents [J]. China Safety Science Journal, 2022, 32(S2): 60-63. |
[13] | LI Xiang, LI Xiao, WANG Song, LEI Miaomiao, LAI Bentao. Study on factors leading to human errors in railway maintenance [J]. China Safety Science Journal, 2022, 32(6): 23-30. |
[14] | JIANG Yanhang, BAI Gang, ZHOU Xihua, WANG Siqi, WANG Lianhua, FAN Chaojun. Experimental study on influence factors of CH4 displacement by CO2 [J]. China Safety Science Journal, 2022, 32(4): 113-121. |
[15] | LIU Haijuan, CHEN Ju, HE Ziming. Study on mental health status and influencing factors of university students during COVID-19 [J]. China Safety Science Journal, 2021, 31(5): 168-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||