China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (9): 173-180.doi: 10.16265/j.cnki.issn1003-3033.2023.09.2142
• Public safety • Previous Articles Next Articles
WEN Huiying(), HUANG Kunhuo(
), ZHAO Sheng**(
)
Received:
2023-03-13
Revised:
2023-06-14
Online:
2023-09-28
Published:
2024-03-28
Contact:
ZHAO Sheng
WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning[J]. China Safety Science Journal, 2023, 33(9): 173-180.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.09.2142
Tab.1
Pearson correlation test results for the characteristic variables
相关系数r | 交通量 pcu | 速度/ (m·s-1) | 加速度/ (m·s-2) | 车头间距/m | 车头时距/s | 交通密度 (pcu·m-1) | 车道 占有率 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 最小值 | 平均值 | 最小值 | |||||
交通量/pcu | 1.00 | — | — | — | — | — | — | — | — | — | — | |
速度/ (m·s-1) | 平均值 | -0.42 | 1.00 | — | — | — | — | — | — | — | — | — |
标准差 | -0.09 | -0.24 | 1.00 | — | — | — | — | — | — | — | — | |
加速度/ (m·s-2) | 平均值 | -0.33 | -0.00 | 0.32 | 1.00 | — | — | — | — | — | — | — |
标准差 | 0.09 | -0.13 | 0.19 | 0.38 | 1.00 | — | — | — | — | — | — | |
车头间 距/m | 平均值 | -0.44 | 0.65 | -0.05 | -0.03 | -0.07 | 1.00 | — | — | — | — | — |
最小值 | -0.56 | 0.60 | -0.09 | -0.01 | -0.09 | 0.62 | 1.00 | — | — | — | — | |
车头时距 /s | 平均值 | 0.02 | -0.09 | 0.09 | 0.02 | 0.01 | -0.05 | -0.07 | 1.00 | — | — | — |
最小值 | -0.36 | 0.07 | -0.01 | -0.06 | -0.04 | 0.36 | 0.71 | -0.00 | 1.00 | — | — | |
交通密度(pcu·m-1) | 1.00 | -0.42 | -0.09 | -0.33 | 0.09 | -0.44 | -0.56 | 0.02 | -0.36 | 1.00 | — | |
车道占有率 | 0.97 | -0.39 | -0.17 | -0.41 | 0.05 | -0.42 | -0.51 | 0.02 | -0.32 | 0.97 | 1.00 | |
因变量 | ||||||||||||
TTC | r | -0.13 | 0.10 | 0.02 | 0.01 | -0.05 | 0.07 | 0.15 | -0.01 | 0.07 | -0.13 | -0.12 |
p | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
Tab.5
Truck classification report
预测模型 分类报告 | RF模型 | SVM模型 | ANN模型 | 测试集样本 的总数量 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
精确度 | 召回率 | F1值 | 精确度 | 召回率 | F1值 | 精确度 | 召回率 | F1值 | ||
无冲突 | 0.75 | 0.84 | 0.79 | 0.72 | 0.78 | 0.78 | 0.75 | 0.77 | 0.76 | 139 |
严重冲突 | 0.74 | 0.82 | 0.78 | 0.65 | 0.62 | 0.63 | 0.59 | 0.68 | 0.63 | 121 |
一般冲突 | 0.75 | 0.56 | 0.64 | 0.57 | 0.60 | 0.58 | 0.58 | 0.48 | 0.52 | 121 |
准确率 | 0.75 | 0.67 | 0.65 | 381 | ||||||
宏平均值 | 0.75 | 0.74 | 0.74 | 0.66 | 0.66 | 0.66 | 0.64 | 0.64 | 0.64 | 381 |
加权平均值 | 0.75 | 0.75 | 0.74 | 0.67 | 0.67 | 0.67 | 0.65 | 0.65 | 0.64 | 381 |
[1] |
张弛. 高速公路交通事故致因及预警[D]. 成都: 西南交通大学, 2008.
|
|
|
[2] |
吴芮. 基于BP神经网络的道路交通事故严重程度分析预测[D]. 成都: 西华大学, 2020.
|
|
|
[3] |
何宇桐, 王勇, 朱西产. 基于道路交通事故深层调查的大型货车事故特征分析[J]. 农业装备与车辆工程, 2008(8):12-16.
|
|
|
[4] |
doi: 10.1016/S0001-4575(00)00019-1 |
[5] |
doi: 10.1016/j.aap.2011.01.011 |
[6] |
王励旸. 我国道路交通事故影响因素统计回归分析[D]. 北京: 清华大学, 2016.
|
|
|
[7] |
黄西子, 黄淑萍. 高速道路追尾感知PC-Crash仿真与统计建模[J]. 中国安全科学学报, 2020, 30(5):143-148.
doi: 10.16265/j.cnki.issn1003-3033.2020.05.022 |
doi: 10.16265/j.cnki.issn1003-3033.2020.05.022 |
|
[8] |
马壮林, 张宏璐, 杨杨. 高速公路追尾碰撞事故起数预测模型研究[J]. 中国安全科学学报, 2015, 25(4):58-62.
|
|
|
[9] |
黎健侃, 李泽炜, 华汶雯, 等. 城市道路交通事故统计分析[J]. 科技创新与应用, 2021, 11(21):74-76.
|
[10] |
杨文臣, 周燕宁, 田毕江, 等. 基于聚类分析和SVM的二级公路交通事故严重度预测[J]. 中国安全科学学报, 2022, 32(5):163-169.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1263 |
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1263 |
|
[11] |
李耘, 张生瑞, 茹渑博. 高速公路施工区车流跟驰追尾冲突风险[J]. 长安大学学报:自然科学版, 2017, 37(2):81-88.
|
|
|
[12] |
陆斯文, 张兰芳, 方守恩. 高速公路追尾机理概率分析及风险评价[J]. 同济大学学报:自然科学版, 2011, 39(8):1150-1154.
|
|
|
[13] |
doi: 10.1016/j.aap.2014.08.003 |
[14] |
doi: 10.1109/Access.6287639 |
[15] |
|
[16] |
朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2) :15-33.
doi: 10.19721/j.cnki.1001-7372.2020.02.002 |
doi: 10.19721/j.cnki.1001-7372.2020.02.002 |
|
[17] |
徐汉清. 高速公路典型区段交通冲突及安全性评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
|
[1] | NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces [J]. China Safety Science Journal, 2024, 34(1): 238-246. |
[2] | LU Lixin, DU Zhiyong, SUN Guosi, TANG Yadong, DU Yongzhi, XIE Miao. Research of dust reduction and spraying system for mining sprinklers [J]. China Safety Science Journal, 2023, 33(S2): 152-157. |
[3] | TIAN Feng, TANG Xiaoqian, QIAO Dongqing. Open-pit truck scheduling optimization method based on SA-CSA [J]. China Safety Science Journal, 2023, 33(S2): 176-181. |
[4] | LI Delong, CHENG Yu, LI Youdong. Prediction model for demand for subway security inspectors under public health emergencies [J]. China Safety Science Journal, 2023, 33(S1): 228-234. |
[5] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[6] | WANG Wei, LIANG Ran, QI Yun, JIA Baoshan, WU Zewei. Prediction model of coal spontaneous combustion risk based on PSO-BPNN [J]. China Safety Science Journal, 2023, 33(7): 127-132. |
[7] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[8] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[9] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[10] | DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses [J]. China Safety Science Journal, 2023, 33(4): 100-106. |
[11] | ZHENG Shiqiu, ZHOU Rongyi, YANG Bifan, LI Li, LU Yi. Research on key causes and transmission paths of hazardous chemicals tank truck transportation accidents [J]. China Safety Science Journal, 2023, 33(4): 172-178. |
[12] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[13] | LI Shuai, LIAN Zhanghua, DING Lingling, LIAO Tao. Prediction model of sustained annular pressure of gas wells under multi-factor coupling effect [J]. China Safety Science Journal, 2023, 33(2): 166-172. |
[14] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[15] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||