China Safety Science Journal ›› 2025, Vol. 35 ›› Issue (12): 187-195.doi: 10.16265/j.cnki.issn1003-3033.2025.12.0798
• Public safety • Previous Articles Next Articles
WANG Qiquan(
), FENG Weixiang, YANG Songli
Received:2025-08-08
Revised:2025-10-10
Online:2025-12-27
Published:2026-06-28
CLC Number:
WANG Qiquan, FENG Weixiang, YANG Songli. Resilience assessment of subway crowd stampede accidents based on SD and MEE model[J]. China Safety Science Journal, 2025, 35(12): 187-195.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2025.12.0798
Table 1
Evaluation indicator system and definitions for metro crowding and stampede resilience
| 一级 指标 | 二级指标 | 定义 |
|---|---|---|
| 吸收 能力 | 站内通道宽度C1/m | 指站台主要通道(含出入口、换乘通道最窄部门)的宽度 |
| 实时密度监测响应时间C2/s | 从监测到人群密度超标到系统/人员作出响应的耗时 | |
| 疏散指标覆盖率C3/% | 疏散指示标志(含地面标识、电子屏等)覆盖关键区域的比例 | |
| 动态限流策略适配性C4 | 地铁站是否根据人流量快速调整限流措施(如关闸机、分批进站) | |
| 障碍物空间压缩系数C5/m2 | 障碍物(如广告牌、垃圾桶设施)占用通道空间多少面积 | |
| 抵抗 能力 | 应急通道开放时间C6 | 紧急情况下,所有逃生通道多久能全部打开 |
| 广播覆盖率C7/% | 应急广播覆盖关键区域(站台、通道、出入口)的比例 | |
| 工作人员现场引导效率C8/% | 工作人员接到警报后,多久能抵达现场指挥,指挥的正确率 | |
| 多部门协同响应时间C9/min | 从事件发生到各部门(公安、消防、医疗)抵达现场的总耗时 | |
| 恢复 能力 | 疏散路径修复效率C10/min | 受损疏散路径(如故障电梯、封闭通道)恢复通行的耗时 |
| 设备设施快速修 复效能C11/min | 关键设备(如监控、闸机)故障后恢复运行的耗时 | |
| 运营重启与班次 调整效能C12/min | 事故后恢复正常运营及调整班次的总耗时 | |
| 适应 能力 | 动态客流风险地 图更新频率C13 | 显示人流热点的地图多长时间更新一次 |
| 限流策略动态调整周期C14 | 根据人流量变化,多长时间调整一次限流措施 | |
| 智能密度调控系 统覆盖率C15/% | 智能系统(如人工智能监控、自动报警)覆盖关键区域的比例 |
Table 2
Key variables and equations of SD model
| 变量 | 变量方程 |
|---|---|
| 实时人群密度 | |
| 人群密度变化量 | |
| 吸收能力流量 | 0.119×C1+0.059×C2+0.053×C3+0.203×C4+0.056×C5- |
| 抵抗能力流量 | 0.061×C6+0.034×C7+0.045×C8+0.020×C9- |
| 恢复能力流量 | 0.058×C10+0.031×C11+0.055×C12- |
| 适应能力流量 | 0.035× |
Table 3
Correlation degree of secondary indicators for absorption、resistance、recoveryand adaptation capacity
| 韧性等级 | N1 | N2 | N3 | N4 | N5 |
|---|---|---|---|---|---|
| K(C1) | -0.331 | 0.017 | -0.009 | -0.339 | -0.504 |
| K(C2) | -0.418 | -0.137 | 0.283 | -0.287 | -0.491 |
| K(C3) | -0.194 | 0.317 | -0.341 | -0.561 | -0.671 |
| K(C4) | -0.190 | 0.306 | -0.347 | -0.565 | -0.674 |
| K(C5) | -0.137 | 0.189 | -0.406 | -0.604 | -0.703 |
| K(C6) | -0.269 | 0.416 | -0.208 | -0.472 | -0.604 |
| K(C7) | -0.364 | -0.125 | 0.334 | -0.222 | -0.416 |
| K(C8) | -0.260 | 0.350 | -0.159 | -0.422 | -0.560 |
| K(C9) | -0.349 | -0.067 | 0.155 | -0.282 | -0.461 |
| K(C10) | -0.273 | 0.400 | -0.200 | -0.467 | -0.600 |
| K(C11) | -0.291 | 0.306 | -0.153 | -0.435 | -0.576 |
| K(C12) | -0.321 | -0.109 | 0.350 | -0.186 | -0.367 |
| K(C13) | -0.444 | -0.375 | -0.286 | -0.167 | 0.118 |
| K(C14) | -0.390 | -0.220 | 0.217 | -0.072 | -0.304 |
| K(C15) | -0.455 | -0.402 | -0.337 | -0.256 | 0.131 |
| [1] |
交通运输部. 2024年城市轨道交通运营数据速报[EB/OL].(2025-01-15). https://mp.weixin.qq.com/s/qgwtz21W4LZfpHDX3JFlWQ.
|
| [2] |
张立茂, 刘梦洁, 吴贤国, 等. 基于DEA的地铁站拥挤踩踏风险分析[J]. 土木工程与管理学报, 2014, 31(4):76-82.
|
|
|
|
| [3] |
霍宇芒, 宋守信, 顾一波. 基于组合权重的地铁车站拥挤踩踏事故风险评价[J]. 安全与环境工程, 2016, 23(5):139-143.
|
|
|
|
| [4] |
doi: 10.1103/RevModPhys.73.1067 |
| [5] |
|
| [6] |
|
| [7] |
王震, 王汉霖. 基于因子分析和熵权-TOPSIS的地铁运营系统韧性评价[J]. 智能城市, 2024, 10(8):73-76.
|
|
|
|
| [8] |
|
| [9] |
|
| [10] |
黄浪, 吴超, 杨冕, 等. 韧性理论在安全科学领域中的应用[J]. 中国安全科学学报, 2017, 27(3):1-6.
doi: 10.16265/j.cnki.issn1003-3033.2017.03.001 |
|
doi: 10.16265/j.cnki.issn1003-3033.2017.03.001 |
|
| [11] |
王起全. 地铁拥挤踩踏事故脆弱性区域智能化预警研究[J]. 中国安全科学学报, 2018, 28(11):162-167.
doi: 10.16265/j.cnki.issn1003-3033.2018.11.026 |
|
doi: 10.16265/j.cnki.issn1003-3033.2018.11.026 |
|
| [12] |
王起全, 杨鑫刚, 蓝军, 等. 多源流理论视域下的地铁拥挤踩踏事故应急管理策略[J]. 中国安全科学报, 2023, 33(11):181-188.
|
|
doi: 10.16265/j.cnki.issn1003-3033.2023.11.0792 |
|
| [13] |
袁欣. 基于仿真优化的地铁站行人踩踏风险控制研究[D]. 武汉: 中南财经政法大学, 2023.
|
|
|
|
| [14] |
王维莉, 薛雪. 人群聚集场所拥挤踩踏风险评估[J]. 灾害学, 2024, 39(1):146-151,157.
|
|
|
|
| [15] |
张旭. 城市轨道交通运营系统安全韧性评价[D]. 石家庄: 石家庄铁道大学, 2022.
|
|
|
| [1] | CHEN Tiehua, LIU Ruikang, LI Hongxia. Modeling and simulation research of miners' work safety responsibility pressure evolution based on SD-BPNN method [J]. China Safety Science Journal, 2025, 35(9): 70-77. |
| [2] | WANG Xinglong, QIU Xin, ZHAO Junni. Airport flight zone operational safety resilience assessment and enhancement [J]. China Safety Science Journal, 2025, 35(4): 18-27. |
| [3] | WANG Feiyue, WANG Xinyu, ZHANG Wenjun, LIU Hui. Safety risk dynamic evaluation of fireworks production enterprises [J]. China Safety Science Journal, 2025, 35(3): 10-18. |
| [4] | WANG Xinglong, QIU Xin, Wei Yiwen. Modeling and resilience assessment of CPS network in airfield area [J]. China Safety Science Journal, 2025, 35(2): 49-56. |
| [5] | TANG Qinghui, LIU Shuo, ZHANG Jin. Resilience assessment of fire safety in subway stations based on WSR-extension cloud theory [J]. China Safety Science Journal, 2025, 35(1): 154-162. |
| [6] | LI Cuixi, WANG Yibao, LIU Zhixiang. Study on resilience assessment and improvement path of urban public safety from perspective of residents' perception: taking Nanjing as an example [J]. China Safety Science Journal, 2024, 34(9): 209-216. |
| [7] | CHEN Changkun, WANG Siqi, SUN Fenglin, YU Rongfu. A resilience assessment model for multilayer networks of urban interdependent infrastructure [J]. China Safety Science Journal, 2024, 34(5): 204-213. |
| [8] | LIU Juan, YE Ran, WANG Jinghong. Simulation analysis of evacuees competitive behavior based on system dynamics [J]. China Safety Science Journal, 2024, 34(11): 58-65. |
| [9] | CHEN Na, GUO Haoran, ZHANG Zhipeng, ZHAO Jun. Evaluation of subway station flood safety resilience based on H-OWA operator and projection pursuit [J]. China Safety Science Journal, 2023, 33(4): 148-154. |
| [10] | MA Fei, GOU Huiyan, YANG Mengnan, LIU Qing, WEI Xiaolin, AO Yuyun. Resilience assessment of multi-modal regional rail transit networks considering grey attack [J]. China Safety Science Journal, 2023, 33(12): 148-159. |
| [11] | XIE Luqiang, WANG Haiyan. Research on risk evolution of cruise ship construction schedule based on SD [J]. China Safety Science Journal, 2022, 32(S1): 63-71. |
| [12] | LIU Zhenliang, YUAN Wei, LI Suchao. Resilience assessment of highway bridge networks subjected to both earthquakes and earthquake-induced secondary emergencies [J]. China Safety Science Journal, 2022, 32(8): 176-184. |
| [13] | TANG Shaohu, ZHU Wei, CHENG Guang, ZHENG Jianchun, ZHOU Jin. Safety resilience assessment of urban road traffic system under rainstorm waterlogging [J]. China Safety Science Journal, 2022, 32(7): 143-150. |
| [14] | BI Wei, TANG Yuchun, MAO Tingting, SUN Xinhong, LI Qiming. Review on resilience management of urban infrastructure system [J]. China Safety Science Journal, 2021, 31(6): 14-28. |
| [15] | HAN Lin, ZHAO Xudong, CHEN Zhilong, GONG Huadong, HOU Benwei. Research on damage resilience assessment of urban power networks under intentional attacks [J]. China Safety Science Journal, 2021, 31(6): 161-169. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||