中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (2): 140-145.doi: 10.16265/j.cnki.issn1003-3033.2023.02.0399

• 安全工程技术 • 上一篇    下一篇

隧道火灾烟气温度及蔓延速度衰减特性

杜涛1(), 李萍2,**(), 王雨1, 薛宪凯3   

  1. 1 长安大学 建筑工程学院,陕西 西安 710061
    2 山西大学 电力与建筑学院,山西 太原 030013
    3 重庆大学 土木工程学院,重庆 400045
  • 收稿日期:2022-09-21 修回日期:2022-12-15 出版日期:2023-02-28 发布日期:2023-08-28
  • 通讯作者: **李 萍(1990—),女,山西晋中人,博士,讲师,主要从事隧道火灾烟气流动与控制方面的研究。E-mail: pingli90@sxu.edu.cn。
  • 作者简介:

    杜 涛 (1990—),男,河南商丘人,博士,副教授,主要从事隧道通风与消防安全方面的研究。E-mail:

  • 基金资助:
    国家重点研发计划项目(2021YFC3002000); 国家自然科学基金资助(51806022)

Longitudinal decay of smoke temperature and front velocity in tunnel fires

DU Tao1(), LI Ping2,**(), WANG Yu1, XUE Xiankai3   

  1. 1 School of Civil Engineering, Chang'an University, Xi'an Shaanxi 710061, China
    2 School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan Shanxi 030013, China
    3 School of Civil Engineering, Chongqing University, Chongqing 400045, China
  • Received:2022-09-21 Revised:2022-12-15 Online:2023-02-28 Published:2023-08-28

摘要:

在隧道火灾烟气内部温度竖向分层的条件下,利用理论分析和数值模拟研究隧道横截面烟气平均温度沿隧道纵向的衰减特性,并量化其对烟气瞬态蔓延速度的影响。在同一隧道截面上,某点处烟气温度随着该点与隧道顶棚之间距离的增大而近似呈线性降低。理论分析表明:将上述温度分层特性考虑在内之后,烟气通过侧壁的热损失比传统算法减小一半。烟气温度与蔓延速度沿隧道纵向的衰减率主要受烟气流量及壁面换热系数的影响;在确定烟气流量时不仅需要量化羽流产烟量,火源附近密度跃变卷吸空气量约为羽流产烟量的10%;烟气与壁面的换热系数不是常数,而与烟气蔓延速度成正比。基于以上分析建立不同截面处烟气平均温度的理论模型,并根据蔓延速度与浮力通量的内在关系,提出烟气蔓延速度预测模型;二者均随着烟气蔓延长度的增大而呈指数衰减。最后利用FDS研究不同火源功率条件下烟气温度和蔓延速度在隧道纵向的衰减率,理论模型与数值模拟的结果比较一致。

关键词: 隧道火灾, 烟气温度, 蔓延速度, 衰减特性, 密度跃变

Abstract:

Temperature distribution inside the smoke layer was not uniformly distributed in tunnel fires. Taking smoke stratification into consideration, the present study theoretically and numerically investigated longitudinal decay of cross-sectional averaged smoke temperature and propagation velocity. This study assumed that temperature inside smoke layer in a cross section linearly decreased with height. According to theoretical analysis, heat loss through lateral walls is 50% lower than that obtained from traditional calculations. Decay rates of smoke temperature and propagation velocity mainly depend on smoke mass flux and heat transfer coefficient between smoke and tunnel walls. Impingement of smoke plume is generally followed by a density jump, during which plenty of ambient air is entrained into the smoke layer. As a result of the density jump, the increment of smoke mass flux is approximately 10% of smoke plume entrainment, which makes quantification of flow rate more accurate. Prediction models regarding cross-sectional averaged smoke temperature and propagation velocity are proposed. Models are consistent with FDS results, indicating that results might be useful in fire safety engineering.

Key words: tunnel fire, smoke temperature, propagation velocity, decay, density jump