中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (2): 48-58.doi: 10.16265/j.cnki.issn1003-3033.2023.02.0983

• 安全工程技术 • 上一篇    下一篇

航空推进系统气动安全阀结构参数分析及优化

王慧1(), 周国强1,**(), 王禹涧2, 岳星岐1, 张一鸣1   

  1. 1 辽宁工程技术大学 机械工程学院,辽宁 阜新 123000
    2 沈阳航天新光集团有限公司,辽宁 沈阳 110000
  • 收稿日期:2022-09-20 修回日期:2022-12-14 出版日期:2023-02-28 发布日期:2023-08-28
  • 通讯作者: **周国强(1996—),男,辽宁铁岭人,博士研究生,研究方向为机械设计与理论。E-mail:zgq7618@163.com。
  • 作者简介:

    王慧 (1960—),男,辽宁凌源人,博士,教授,博士生导师,主要从事液压、气压元件设计及特性等方面研究。E-mail:

  • 基金资助:
    国家自然科学基金资助(52204169); 辽宁工程技术大学博士启动基金资助(21-1024)

Structural parameter analysis and optimization of pneumatic safety valve in aviation propulsion system

WANG Hui1(), ZHOU Guoqiang1,**(), WANG Yujian2, YUE Xingqi1, ZHANG Yiming1   

  1. 1 School of Mechanical Engineering, Liaoning Technical University, Fuxin Liaoning12300, China
    2 Shenyang Aerospace Xinguang Group Co. Ltd., Shenyang Liaoning 110000, China
  • Received:2022-09-20 Revised:2022-12-14 Online:2023-02-28 Published:2023-08-28

摘要:

为改善某型航空推进系统气动安全阀的性能,建立航空推进系统双级气体减压器和安全阀组成的高压气路AMESim数值模型,搭建安全阀性能测试试验台,验证模型准确性,分析结构参数对安全阀特性的影响机制。采用响应曲面法(RSM),建立结构参数与安全阀压力超调量和响应时间的显著不失拟回归模型,通过方差分析 (ANOVA)研究结构参数交互作用对安全阀压力超调量和响应时间影响的显著性差异,并基于自适应范围多目标遗传算法 (ARMOGA),优化入口长度、入口直径和弹簧刚度参数。研究结果表明:入口长度、入口直径、弹簧刚度对超调量和响应时间的影响依次降低,入口长度与直径的交互作用最为显著;入口长度、入口直径、弹簧刚度分别为 14.587 8 mm、 14.898 0 mm、48.966 8 N/mm时安全阀性能最佳,优化后超调量降低6.917%,响应时间降低6.383%。

关键词: 航空推进系统, 气动安全阀, 结构参数, 超调量和响应时间, 多目标优化

Abstract:

In order to improve the working performance of the pneumatic safety valve for aviation propulsion system, the AMESim numerical model of the high-pressure gas line of a double-stage gas pressure reducer and a safety valve was established. A safety valve test performance experimental bench was built to verify the accuracy of the model, and the influence law of structural parameters on the characteristics of the safety valve was studied. A significant regression model of structural parameters and safety valve pressure overshoot and response time was established using response surface methodology (RSM). The significant differences in the effects of structural parameter interactions on safety valve pressure overshoot and response time were investigated using Analysis of Variance (ANOVA). The parameters of inlet length, inlet diameter and spring stiffness were optimized based on an Adaptive Range Multi-objective Genetic Algorithm (ARMOGA). The results of the study show that the influence of inlet length, inlet diameter, and spring stiffness on overshoot and response time decreases in descending order, with the interaction between inlet length and diameter being the most significant. The best performance of the safety valve is achieved when the inlet length, inlet diameter and spring stiffness are 14.587 8 mm, 14.898 0 mm and 48.966 8 N/mm, respectively, and the optimized overshoot is reduced by 6.917% and the response time is reduced by 6.383%.

Key words: aviation propulsion system, pneumatic safety valve, structural parameters, overshoot and response time, multi-objective optimization