[1] |
DING Zhi, ZHANG Mobao, ZHANG Xiao, et al. Theoretical analysis on the deformation of existing tunnel caused by under-crossing of large-diameter slurry shield considering construction factors[J]. Tunnelling and Underground Space Technology, 2023, 133: DOI: 10.1016/j.tust.2022.104913.
|
[2] |
叶万军, 成炜康, 陈笑楠, 等. 砂卵石地层大直径盾构工程地表沉降深度学习预测[J]. 中国安全生产科学技术, 2023, 19(8):124-129.
|
|
YE Wanjun, CHENG Weikang, CHEN Xiaonan, et al. Deep learning and prediction on surface subsidence of large-diameter shield project in sandy cobble stratum[J]. Journal of Safety Science and Technology, 2023, 19(8):124-129.
|
[3] |
翟淑芳, 杜红坤, 岳奇超, 等. 基于特征粒径的盘形滚刀破岩最优贯入度分析[J]. 现代隧道技术, 2023, 60(4):147-152,162.
|
|
ZHAI Shufang, DU Hongkun, YUE Qichao, et al. Analysis of the optimal penetration of disc cutter in rock breaking based on Characteristic particle size[J]. Modern Tunnelling Technology, 2023, 60(4):147-152,162.
|
[4] |
张仁贤. 泥水盾构掘进功率自适应控制技术研究[D]. 杭州: 浙江大学, 2019.
|
|
ZHANG Renxian. Research on power adaptive control technology of slurry shield driving head[D]. Hangzhou: Zhejiang University, 2019.
|
[5] |
朱才辉, 李宁. 地铁施工诱发地表最大沉降量估算及规律分析[J]. 岩石力学与工程学报, 2017, 36(增1):3543-3560.
|
|
ZHU Caihui, LI Ning. Estimation and regularity analysis of maximal surface settlement induced by subway construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1):3543-3560.
|
[6] |
王超, 刘红中, 王乐乎, 等. 基于线性回归法的TBM滚刀贯入度预测研究[J]. 隧道建设:中英文, 2021, 41(增1):207-215.
|
|
WANG Chao, LIU Hongzhong, WANG Lehu, et al. Penetration prediction of disc cutter of tunnel boring machine based on linear regression method[J]. Tunnel Construction, 2021, 41(S1):207-215.
|
[7] |
张垚. 土压平衡盾构机掘进系统能耗优化控制[D]. 抚顺: 辽宁石油化工大学, 2020.
|
|
ZHANG Yao. Optimization control of energy consumption in tunneling system of earth pressure balance shield tunneling machine[D]. Fushun: Liaoning Petrochemical University, 2020.
|
[8] |
PECK R B. Deep excavations and tunnelling in soft ground[C]. The 7th International Conference on Soil Mechanics and Foundation Engineering, 1969:225-290.
|
[9] |
LIU Xinrong, SULIMAN Lojain, ZHOU Xiaohan, et al. Settlement characteristic due to excavate parallel tunnels in a fill-rock slope: model test and numerical analysis[J]. Rock Mechanics and Rock Engineering, 2022, 55(11):7125-7143.
|
[10] |
LI Liping, SUN Shanggu, WANG Jing, et al. Development of compound EPB shield model test system for studying the water inrushes in karst regions[J]. Tunnelling and Underground Space Technology, 2020, 101: DOI: 10.1016/j.tust.2020.103404.
|
[11] |
GUO Kai, ZHANG Limao. Data-driven optimization for mitigating tunnel-induced damages[J]. Applied Soft Computing, 2022, 115: DOI: 10.1016/j.asoc.2021.108128.
|
[12] |
方诗圣, 苏一恒, 林彤彤, 等. 基于机器学习的盾构掘进地表沉降回归预测模型[J]. 合肥工业大学学报:自然科学版, 2023, 46(9):1224-1229.
|
|
FANG Shisheng, SU Yiheng, LIN Tongtong, et al. Regression prediction model of shield tunneling-induced ground settlement based on machine learning algorithms[J]. Journal of Hefei University of Technology:Natural Science, 2023, 46(9):1224-1229.
|
[13] |
SHAN Feng, HE Xuzhan, ARMAGHANI D J, et al. Success and challenges in predicting TBM penetration rate using recurrent neural networks[J]. Tunnelling and Underground Space Technology, 2022, 130: DOI: 10.1016/j.tust.2022.104728.
|
[14] |
ELBAZ K, YAN Tao, ZHOU Annan, et al. Deep learning analysis for energy consumption of shield tunneling machine drive system[J]. Tunnelling and Underground Space Technology, 2022, 123: DOI: 10.1016/j.tust.2022.104405.
|
[15] |
吴贤国, 冯宗宝, 刘俊, 等. 基于RF-NSGA-Ⅱ的盾构施工地表沉降安全控制多目标优化[J]. 中国安全科学学报, 2022, 32(8):45-51.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702
|
|
WU Xianguo, FENG Zongbao, LIU Jun, et al. Multi-objective optimization of surface settlement safety control during shield construction based on RF-NSGA-Ⅱ[J]. China Safety Science Journal, 2022, 32(8):45-51.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702
|
[16] |
曾铁梅, 王金峰, 吴贤国, 等. 盾构下穿既有隧道位移控制施工参数多目标优化[J]. 铁道标准设计, 2022, 66(2):98-104.
|
|
ZENG Tiemei, WANG Jinfeng, WU Xianguo, et al. Multi-objective optimization of displacement of shield tunneling underpass existing tunnel based on GA-LSSVM combining NSGA-II[J]. Railway Standard Design, 2022, 66(2):98-104.
|
[17] |
鲁宇明, 史册, 黎明, 等. 基于改进MOEAD算法的零件加工布局优化研究[J]. 机械设计, 2021, 38(5):49-56.
|
|
LU Yuming, SHI Ce, LI Ming, et al. Research on optimization of parts processing layout based on the improved MEAD algorithm[J]. Journal of Machine Design, 2021, 38(5):49-56.
|
[18] |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C]. The 32nd International Conference on Neural Information Processing Systems, 2018:6639-6649.
|
[19] |
ZHANG Qingfu, LI Hui. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
|
[20] |
刘茜. 基于智能方法的盾构施工参数预测和优化控制[D]. 武汉: 华中科技大学, 2022.
|
|
LIU Xi. Prediction and optimal control of shield construction parameters based on intelligent methods[D]. Wuhan: Huazhong University of Science and Technology, 2022.
|
[21] |
KIM D K, KWON K, PHAM K, et al. Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization[J]. Automation in Construction, 2022, 140:DOI: 10.1016/j.autcon.2022.104331.
|
[22] |
CHEN Renpeng, ZHANG Pin, WU Huaina, et al. Prediction of shield tunneling-induced ground settlement using machine learning techniques[J]. Frontiers of Structural and Civil Engineering, 2019, 13(6):1363-1378.
doi: 10.1007/s11709-019-0561-3
|
[23] |
张品. 基于机器学习算法的盾构掘进地表沉降预测及控制[D]. 长沙: 湖南大学, 2019.
|
|
ZHANG Pin. Prediction and control of tunneling-induced settlement using machine learning algorithms[D]. Changsha: Hunan University, 2019.
|
[24] |
TANG Libin, NA Seonhong. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(6):1274-89.
|
[25] |
阮顺领, 韩思淼, 张宁宁, 等. 基于CNN-aGRU融合模型的尾矿坝浸润线预测方法[J]. 中国安全科学学报, 2023, 33(增1):119-127.
|
|
RUAN Shunling, HAN Simiao, ZHANG Ningning, et al. Prediction method of saturation line of tailings dam based on CNN-aGRU fusion model[J]. China Safety Science Journal, 2023, 33(S1):119-127.
doi: 10.16265/j.cnki.issn1003-3033.2023.S1.2481
|