中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (9): 202-208.doi: 10.16265/j.cnki.issn1003-3033.2024.09.1963

• 公共安全 • 上一篇    下一篇

相继故障下城市轨道交通系统韧性评估方法

陈津怡1,2(), 李铁柱1,2,**(), 郭竞文3, 刘慧4, 陈海波5   

  1. 1 东南大学 交通学院, 江苏 南京 211189
    2 南京轨道交通智慧运输研究工作站,江苏 南京 210012
    3 南京地铁运营有限责任公司 运输管理事业部, 江苏 南京 210012
    4 南京铁道职业技术学院运输管理学院,江苏 南京 210031
    5 利兹大学 交通研究所,英国 利兹 LS2 9JT
  • 收稿日期:2024-02-21 修回日期:2024-05-23 出版日期:2024-09-28
  • 通信作者:
    ** 李铁柱(1971—),男,河南许昌人,博士,教授,主要从事城市轨道交通运营、交通环境与能源等方面的研究。E-mail:
  • 作者简介:

    陈津怡 (1995—),女,河南洛阳人,博士研究生,主要研究方向为城市轨道交通网络韧性、城市轨道交通故障分析。E-mail:

    郭竞文, 工程师;

    刘慧, 讲师;

    陈海波, 教授

  • 基金资助:
    江苏轨道交通产业发展协同创新基地开放基金资助(GCXC2103)

Resilience assessment method of urban rail transit system under cascading failure

CHEN Jinyi1,2(), LI Tiezhu1,2,**(), GUO Jingwen3, LIU Hui4, CHEN Haibo5   

  1. 1 School of Transportation, Southeast University, Nanjing Jiangsu 211189, China
    2 Nanjing Rail Transit Smart Transportation Research Station, Nanjing Jiangsu 210012, China
    3 Transportation Management Division, Nanjing Metro Operation Co., Ltd., Nanjing Jiangsu 210012, China
    4 School of Transport Management, Nanjing Vocational Institute of Railway Technology, Nanjing Jiangsu 210031, China
    5 Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
  • Received:2024-02-21 Revised:2024-05-23 Published:2024-09-28

摘要:

为确定城市轨道交通系统中的高风险节点,提升网络韧性和运营安全性,选取网络效率、平均最短路径长度和最大连通子图3个指标,构建评估网络韧性的性能函数模型,提出一种考虑拓扑结构和客流分布均衡性的运营关键站点评估方法,并以南京城市轨道交通系统为例,在无权和加权网络中,探究关键程度降序、介数中心性降序和随机顺序3种相继故障模式下差异性的韧性失效过程。结果表明:关键站点在工作日和周末差异较小;按照关键站点降序的相继故障前期,网络韧性性能下降最为迅速;与拓扑网络相比,客流加权网络在相继故障前期韧性指数下降更快。在网络相继故障未大面积扩散时重点强化关键站点的管控,有助于缩小网络韧性损失。

关键词: 城市轨道交通, 网络韧性, 相继故障, 关键站点, 加权网络

Abstract:

In order to identify high-risk stations in urban rail transit systems and improve network resilience and operational safety, a performance function model was constructed to evaluate the network resilience by selecting network efficiency, average shortest path length and maximum connection sub-graph as indicators, and an evaluation method for critical stations was proposed, considering topological structure and passenger flow distribution equilibrium. Taking Nanjing Metro as an example, three cascading failure modes, descending critical degree, descending betweenness centrality and random sequence, are adopted. The characteristics of resilience degradation under different cascading failures are simulated respectively in the unweighted network and the weighted network. The results show that the critical stations are similar on weekdays and weekends. The resilience performance decreases most rapidly in the early stages of failures in descending order of critical stations. Compared with topology networks, the resilience index of passenger flow-weighted networks decreases faster in the early stages of cascading failures. Strengthening the control of critical stations when cascading failures do not spread widely can help reduce the loss of network resilience.

Key words: urban rail transit, network resilience, cascading failure, critical stations, weighted network

中图分类号: