[1] |
POTTER A W, GONZALEZ J A, KARIS A J, et al. Biophysical assessment and predicted thermophysiologic effects of body armor[J]. Plos One, 2015, 10(7): DOI: 10.1371/journal.pone.0132698.
|
[2] |
DU Chenqiu, LI Baizhan, LI Yongqiang, et al. Modification of the predicted heat strain (PHS) model in predicting human thermal responses for Chinese workers in hot environments[J]. Building and Environment, 2019, 165: DOI: 10.1016/j.buildenv.2019.106349.
|
[3] |
MALCHAIRE J, PIETTE A, KAMPMANN B, et al. Development and validation of the predicted heat strain model[J]. The Annals of Occupational Hygiene, 2001, 45(2):123-135.
|
[4] |
安启启, 徐刚, 杨杰, 等. 高温高湿环境下人体热生理模型的检验及应用[J]. 西安科技大学学报, 2021, 41(2):253-261.
|
|
AN Qiqi, XU Gang, YANG Jie, et al. Examination and application of human thermo physiological model in high temperature and humidity environment[J]. Journal of Xi'an University of Science and Technology, 2021, 41(2):253-261.
|
[5] |
李春艺, 李川, 闫肖岳, 等. 户外高温环境建筑工人热应激预测分析评价[J]. 劳动保护, 2022(6):78-82.
|
[6] |
吴建松, 李乐天, 韩新阳, 等. 高温户外环境电网作业人员热应激预测评价[J]. 中国安全生产科学技术, 2021, 17(12):169-175.
|
|
WU Jiansong, LI Letian, HAN Xinyang, et al. Prediction and evaluation on heat strain of power grid workers in high-temperature outdoor environment[J]. Journal of Safety Science and Technology, 2021, 17(12):169-175.
|
[7] |
聂兴信, 王廷宇, 孙锋刚, 等. 高温矿井热湿环境对人体机能的影响[J]. 金属矿山, 2020(4):186-193.
|
|
NIE Xingxin, WANG Tingyu, SUN Fenggang, et al. Influence of heat and humidity environment on function of human body in high temperature mine[J]. Metal Mine, 2020(4):186-193.
|
[8] |
柯莹, 周文. 个体降温服降温效应评价指标及方法[J]. 服装学报, 2021, 6(1):1-7.
|
|
KE Ying, ZHOU Wen. Evaluation indicators and methods of cooling effects for personal cooling clothing[J]. Journal of Clothing Research, 2021, 6(1):1-7.
|
[9] |
HAN Xinge, HU Zhuqiang, LI Chuan, et al. Prediction of human thermal comfort preference based on supervised learning[J]. Journal of Thermal Biology, 2023,112: DOI: 10.1016/j.jtherbio.2023.103484.
|
[10] |
CHAUDHURI T, SOH Y C, LI H, et al. Machine learning based prediction of thermal comfort in buildings of equatorial Singapore[C]. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). IEEE, 2017:72-77.
|
[11] |
MORRESI N, CASACCIA S, SORCINELLI M, et al. Sensing physiological and environmental quantities to measure human thermal comfort through machine learning techniques[J]. IEEE Sensors Journal, 2021, 21(10):12322-12 337.
|
[12] |
LIU Kuixing, NIE Ting, LIU Wei, et al. A machine learning approach to predict outdoor thermal comfort using local skin temperatures[J]. Sustainable Cities and Society, 2020,59: DOI: 10.1016/j.scs.2020.102216.
|
[13] |
MORISHIMA S, XU Yingjie, URASHIMA A, et al. Human body skin temperature prediction based on machine learning[J]. Artificial Life and Robotics, 2021, 26:103-108.
|
[14] |
YANG Jie, WANG Lijuan, YIN Haiguo, et al. Thermal responses of young males of three thermal preference groups in summer indoor environments[J]. Building and Environment, 2021, 194(11): DOI: 10.1016/j.buildenv.2021.107705.
|
[15] |
KARJALAINEN S. Gender differences in thermal comfort and use of thermostats in everyday thermal environments[J]. Building and Environment, 2007, 42(4):1 594-1 603.
|
[16] |
KARJALAINEN S. Thermal comfort and gender: a literature review[J]. Indoor Air, 2012, 22(2):96-109.
doi: 10.1111/j.1600-0668.2011.00747.x
pmid: 21955322
|
[17] |
FERRARO S, IAVICOLI S, RUSSO S, et al. A field study on thermal comfort in an Italian hospital considering differences in gender and age[J]. Applied Ergonomics, 2015, 50:177-184.
doi: 10.1016/j.apergo.2015.03.014
pmid: 25959333
|
[18] |
HAVENITH G. Individualized model of human thermoregulation for the simulation of heat stress response[J]. Journal of Applied Physiology, 2001, 90(5):1 943-1 954.
|
[19] |
HUIZENGA C, ZHANG H, THOMAS D. An improved multimode model of human physiology and thermal comfort[J]. Proceedings of Building Simulation, 1999, 35(1):353-359.
|
[20] |
TAKAHASHI Y, NOMOTO A, YODA S, et al. Thermoregulation model JOS-3 with new open source code[J]. Energy and Buildings, 2021,231: DOI: 10.1016/j.enbuild.2020.110575.
|
[21] |
ISO 8996-2021,Ergonomics of the thermal environment:determination of metabolic rate[S].
|
[22] |
范淼. 机器学习及实践:从零开始通往Kaggle竞赛之路[M]. 北京: 清华大学出版社, 2016:183.
|
[23] |
HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28.
|
[24] |
FRIEDL M A, BRODLEY C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61(3):399-409.
|
[25] |
KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]. 31st International Conference on Neural Information Processing Systems, 2017:3 149-3 157.
|
[26] |
RIGATTI S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1):31-39.
doi: 10.17849/insm-47-01-31-39.1
pmid: 28836909
|
[27] |
BUZA K, NANOPOULOS A, NAGY G. Nearest neighbor regression in the presence of bad hubs[J]. Knowledge-Based Systems, 2015, 86:250-260.
|
[28] |
MCDONALD G C. Ridge regression[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2009, 1(1):93-100.
|
[29] |
AWAD M, KHANNA R. Support vector regression[J]. Neural Information Processing Letters & Reviews, 2007, 11(10):203-224.
|
[30] |
FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874.
|
[31] |
STOLWIJK J A. A mathematical model of physiological temperature regulation in man[R]. Nasa Langley, 1971.
|
[32] |
WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3):37-52.
|
[33] |
LOUPPE G, WEHENKEL L, SUTERA A, et al. Understanding variable importances in Forests of randomized trees[J]. Advances in Neural Information Processing Systems, 2013, 26:431-439.
|