中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 101-109.doi: 10.16265/j.cnki.issn1003-3033.2025.04.1104

• 安全工程技术 • 上一篇    下一篇

基于模型融合的电池组电流传感器多故障模式综合诊断

杨启帆 副教授1(), 康永哲 讲师2,**()   

  1. 1 山东管理学院 智能工程学院,山东 济南 250357
    2 山东大学 控制科学与工程学院,山东 济南 250061
  • 收稿日期:2024-11-25 修回日期:2025-02-16 出版日期:2025-04-28
  • 通信作者:
    **康永哲(1993—),男,山东菏泽人,博士,讲师,主要从事锂离子电池安全方面的研究。E-mail:
  • 作者简介:

    杨启帆 (1990—),男,山东济南人,博士,副教授,主要从事锂离子电池组故障诊断方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金资助(62203265); 山东省自然科学基金资助(ZR2022QF028); 山东省高等学校青创科技支持计划项目(2024KJH005)

Model fusion based comprehensive diagnosis of multi-fault modes for current sensor of battery packs

YANG Qifan1(), KANG Yongzhe2,**()   

  1. 1 School of Intelligent Engineering, Shandong Management University, Jinan Shandong 250357, China
    2 School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China
  • Received:2024-11-25 Revised:2025-02-16 Published:2025-04-28

摘要:

为解决电池组电流传感器偏置、漂移、增益、粘连和突变故障模式难以检测、识别和评估的问题,提出基于模型融合的电池组电流传感器综合诊断策略。建立以电流为输入、电压为输出(CIVO)的正常电池模型,利用电流传感器和组中电池一对多的关联,将各电池电压残差对数似然比的累计和作为检测指标;建立以电压为输入、电流为输出(VICO)的偏置/漂移故障模型和增益故障模型,基于故障电流的残差方差对各故障模式进行模型匹配;通过向故障模型中引入故障参量,实现对偏置、漂移和增益模式的定量评估。结果表明:基于CIVO,5种故障模式均能得到可靠检测,其中粘连模式检测时间最短,而漂移模式所需检测时间最长,归因于漂移模式下故障电流的缓变特点;基于VICO,5种故障模式均能得到准确识别,同时偏置、漂移和增益模式的定量评估准确度高,评估结果分别为0.396 2A(试验值0.4A),1.641 7×10-4(试验值1.5×10-4)及0.201 6(试验值0.2)。

关键词: 电池组, 电流传感器, 故障模式, 综合诊断, 模型融合

Abstract:

To solve the issues that the bias, drift, gain, sticking and mutation fault modes of the current sensor in a battery pack are difficult to detect, recognize and evaluate, a comprehensive diagnosis strategy based on model fusion was proposed. A normal battery model with current as input and voltage as output (CIVO) was established. Based on the one-to-many relationship between the current sensor and batteries in the pack, the cumulative sum of the log-likelihood ratios of the residuals of the voltage of each cell was used as the detection index. A bias/drift fault model and a gain fault model with voltage as input and current as output (VICO) were established. Based on the residual variance of fault current, the model matching was performed on each fault mode. The quantitative evaluation of the bias, drift and gain modes were achieved by introducing a fault parameter to the fault model. The results show that based on CIVO, the five fault modes can be reliably detected. The sticking mode takes the shortest detection time and the drift mode requires the longest detection time, attributed to the slow-change characteristics of the fault current. Based on VICO, five fault modes can be accurately recognized. The quantitative evaluations of the bias, drift and gain modes are highly accurate, with the evaluation results of 0.396 2 A (experimental value 0.4 A), 1.641 7×10-4 (experimental value 1.5×10-4) and 0.201 6 (experimental value 0.2), respectively.

Key words: battery pack, current sensors, fault modes, comprehensive diagnostics, model fusion

中图分类号: