中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 110-119.doi: 10.16265/j.cnki.issn1003-3033.2025.04.0893

• 安全工程技术 • 上一篇    下一篇

基于可解释机器学习模型的基坑围护墙变形影响因素分析

刘亚栋1,2,3(), 刘贤4, 胡贺松 教授级高级工程师2,**(), 陈航 正高级工程师1, 乔升访 高级工程师1   

  1. 1 广州市建筑科学研究院集团有限公司,广东 广州 510440
    2 广州建筑股份有限公司,广东 广州 510030
    3 华南理工大学 土木与交通学院,广东 广州 510641
    4 中山大学 土木工程学院,广东 广州 510275
  • 收稿日期:2024-12-30 修回日期:2025-02-19 出版日期:2025-04-28
  • 通信作者:
    **胡贺松(1979—),男,河南驻马店人,博士,教授级高级工程师,主要从事岩土工程检测、安全监测与建筑施工等方面的研究。E-mail:
  • 作者简介:

    刘亚栋 (1991—),男,河南信阳人,博士,主要从事岩土工程安全评估、机器学习及大数据分析等方面的研究。E-mail:

  • 基金资助:
    广州市科技计划项目(2024B03J1389); 广州市建筑集团有限公司科技计划项目(2024KJ033); 广州市建筑集团有限公司科技计划项目(2024KJ030); 广州市院士专家工作站建设项目(创新中心-2024-D011)

Analysis of feature importance to retaining wall deformation of excavation using interpretable machine learning model

LIU Yadong1,2,3(), LIU Xian4, HU Hesong2,**(), CHEN Hang1, QIAO Shengfang1   

  1. 1 Guangzhou Institute of Building Science Group Co., Ltd., Guangzhou Guangdong 510440, China
    2 Guangzhou Construction Engineering Co., Ltd., Guangzhou Guangdong 510030, China
    3 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China
    4 School of Civil Engineering, Sun Yat-sen University, Guangzhou Guangdong 510275, China
  • Received:2024-12-30 Revised:2025-02-19 Published:2025-04-28

摘要:

为了提高基坑变形预测的可解释性,构建一种基于可解释机器学习的基坑围护墙变形预测模型,并详细分析各特征变量对预测结果的影响。首先,将大量的基坑支护结构参数作为数据集,利用80%的数据集和极限梯度提升(XGBoost)模型构建基坑围护墙最大侧移的预测模型;然后,基于20%的数据集对模型进行测试,利用决定系数、偏差系数、平均绝对百分差和均方根误差4种指标评估模型精度;最后,基于XGBoost模型,运用沙普利加和解释(SHAP)方法完成基坑特征变量的全局解释、单个样本的局部分析和特征变量的交互作用分析。结果表明:所提方法能够对基坑的变形预测进行全局和局部解释。在全局层面,不仅能提供基坑特征变量的重要性排序,还可以给出SHAP值的分布;在局部层面,能够将单个样本的变形预测结果分解为基值和每个特征变量的贡献,从而量化单个特征变量的影响。

关键词: 可解释性, 机器学习模型, 基坑, 围护墙变形, 影响因素, 特征变量

Abstract:

In order to improve the interpretability of excavation deformation prediction, this study developed an interpretable machine-learning model aimed at predicting the deformation of excavation retaining walls. A comprehensive analysis was conducted to evaluate the influence of different feature variables on the prediction outcomes. Firstly, a large number of excavation support structure parameters were used as a dataset, and 80% of the dataset was used to build a prediction model for the maximum lateral deflection of the retaining wall using the XGBoost (eXtreme Gradient Boosting)model. Then, the model was tested based on the remaining 20% of the dataset, and the accuracy of the model was evaluated by four indicators, i.e., the coefficient of determination, bias factor, mean absolute percentage error, and root mean square error. Finally, combined with the XGBoost model, the SHAP(SHapley Additive exPlanations) method was applied to complete the global explanation of the excavation feature variables, the partial analysis of individual samples, and the analysis of interaction effects of feature variables. The results show that the proposed method can provide both global and local explanations for the deformation prediction of excavation. At the global level, it not only provides the importance ranking of feature variables, but also gives the distribution of SHAP values. At the local level, the deformation prediction results of individual samples are decomposed into the base value and the contribution of each feature variable, which can quantify the impact of individual feature variables.

Key words: interpretability, machine learning model, excavation, retaining wall deformation, influence factor, feature variable

中图分类号: