中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (5): 174-181.doi: 10.16265/j.cnki.issn1003-3033.2023.05.1892

• 防灾减灾技术与工程 • 上一篇    下一篇

自然灾害视角下区域韧性评价方法及影响因素

刘启源(), 刘金程   

  1. 中国矿业大学(北京) 文法学院,北京 100083
  • 收稿日期:2022-12-14 修回日期:2023-03-10 出版日期:2023-05-28
  • 作者简介:

    刘启源 (1993—),男,安徽宿州人,博士研究生,主要研究方向为应急管理与城市韧性。E-mail:

  • 基金资助:
    北京市社会科学基金资助(20GLC044)

Regional resilience evaluation methods and influencing factors from perspective of natural disasters

LIU Qiyuan(), LIU Jincheng   

  1. School of Law and Humanities, China University of Mining and Technology-Beijing, Beijing 100083, China
  • Received:2022-12-14 Revised:2023-03-10 Published:2023-05-28

摘要:

为评估不同地区面对自然灾害冲击的区域韧性及影响因素,以自然灾害冲击地区所表现出的脆弱性和适应性,综合反映区域韧性,构建一种理解和量化区域韧性的框架。运用基于松弛变量的数据包络分析(SBM-DEA)方法,测算2011—2020年我国27个省、自治区、直辖市的区域韧性水平;并结合空间杜宾模型,综合考察社会、经济、环境等多维影响因素与区域韧性的空间效应关系。研究结果表明:自然灾害视角下全国区域韧性水平呈现北低南高的整体格局,地区间差异较大,年份差异相对较小,但变化幅度和频率存在逐渐扩大的趋势,区域韧性表现并不与社会经济发展水平强相关;空间计量回归中,教育程度、医疗资源、社会保障、产业结构等多种影响因素与区域韧性形成显著地空间效应关系。

关键词: 自然灾害, 区域韧性, 评价方法, 影响因素, 基于松弛变量的数据包络分析(SBM-DEA), 空间计量

Abstract:

In order to evaluate regional resilience and influencing factors of different regions facing the impact of natural disasters, regional resilience was comprehensively reflected by the vulnerability and adaptability of the region in the impact of natural disasters, and a framework was constructed to understand and quantify regional resilience. The SBM-DEA method was applied to measure regional resilience levels of 27 provinces in China from 2011 to 2020, and the spatial effects of social, economic, environmental and other multidimensional influencing factors on regional resilience were examined in conjunction with the spatial Durbin model. The results show that: the regional resilience level in China from the perspective of natural disasters shows an overall pattern of low in the north and high in the south, with large differences between regions and relatively small differences in years. There is a trend of gradual expansion of the magnitude and frequency of changes and the regional resilience performance is not strongly correlated with the level of socio-economic development. In the spatial econometric regression, various influencing factors, such as education level, medical resources, social security, industrial structure and regional resilience, form a significant spatial effect relationship with regional resilience.

Key words: natural disasters, regional resilience, evaluation method, influencing factors, slacks based model-data envelopment analysis(SBM-DEA), spatial econometrics