中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (8): 190-197.doi: 10.16265/j.cnki.issn1003-3033.2023.08.1084

• 公共安全 • 上一篇    下一篇

无信号交叉口人车冲突严重程度影响因素分析

张名芳1(), 马艳华1, 马勇2   

  1. 1 北方工业大学 城市道路智能交通控制技术北京市重点实验室,北京 100144
    2 长安大学 汽车学院, 陕西 西安 710064
  • 收稿日期:2023-03-09 修回日期:2023-06-11 出版日期:2023-10-08
  • 作者简介:

    张名芳 (1989—),女,安徽安庆人,博士,副教授,硕士生导师,主要从事智能车辆环境感知、人车交互技术方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金资助(51905007); 北京市教育委员会科学研究计划项目(KM202210009013)

Influencing factors on severity of vehicle-pedestrian conflict at unsignalized intersections

ZHANG Mingfang1(), MA Yanhua1, MA Yong2   

  1. 1 Beijing Key Laboratory of Urban Road Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China
    2 School of Automobile, Chang'an University, Xi'an Shaanxi 710064, China
  • Received:2023-03-09 Revised:2023-06-11 Published:2023-10-08

摘要:

为提高无信号交叉口通行效率并改善行人过街安全性,利用K-means++算法聚类冲突指标以判定人车冲突严重程度,通过多重共线性检验和皮尔逊相关性分析剔除严重共线性和影响不显著的因素,并进行影响因素强弱程度排序,采用多元有序Logistic回归算法,对比分析各显著独立因素对人车冲突严重程度的具体影响。结果表明:以碰撞时间、间隙时间、安全减速度为冲突指标,可将人车冲突严重程度分为严重、一般和轻微冲突;行人特征中,性别、分心行为、等候时间、平均穿越速度以及是否有人陪同对冲突严重程度的影响强弱程度依次减小;车辆特征中,车头时距、行驶意图和车辆类型对冲突严重程度有显著影响。

关键词: 无信号交叉口, 人车冲突严重程度, 影响因素, K-means++算法, 多元有序Logistic回归

Abstract:

In order to improve the crossing efficiency at unsignalized intersections and the safety of pedestrian crossings, K-means++ algorithm was used to cluster the conflict indicators to determine the severity of vehicle-pedestrian conflict. Severe multicollinearity and insignificant influencing factors were eliminated by multi-collinearity test and Pearson correlation analysis, and then the influencing factors were ranked. Multiple ordered Logistic regression algorithm was used to compare and analyze the specific influence of each significant independent factor on the severity of vehicle-pedestrian conflicts. The results show that the severity of vehicle-pedestrian conflicts can be divided into severe, general and minor conflicts by taking time to collision, gap time and deceleration to safety time as conflict indicators. The influence of gender, distracted behavior, waiting time, average crossing speed and whether accompanied by others on the severity of conflict decreased successively among the pedestrian characteristics. Headway, driving intention and vehicle type have significant effects on the severity of conflict among the vehicle characteristics.

Key words: unsignalized intersections, severity of vehicle-pedestrian conflict, influencing factors, K-means++ algorithm, multi-variate ordered Logistic regression