中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (8): 196-204.doi: 10.16265/j.cnki.issn1003-3033.2025.08.1426

• 公共安全 • 上一篇    下一篇

基于改进灰狼优化BP网络的城中村火灾预测

吕淑然(), 田江雪, 党鑫宇   

  1. 首都经济贸易大学 管理工程学院, 北京 100070
  • 收稿日期:2025-03-05 修回日期:2025-05-20 出版日期:2025-08-28
  • 作者简介:

    吕淑然 (1964—)男,河北保定人,博士,教授,主要从事防火防爆、安全风险管控方面的研究。E-mail:

Fire prediction in urban villages based on improved grey wolf optimized BP network

LYU Shuran(), TIAN Jiangxue, DANG Xinyu   

  1. School of Management Engineering, Capital University of Economics and Business, Beijing 100070, China
  • Received:2025-03-05 Revised:2025-05-20 Published:2025-08-28

摘要: 为了预防城中村火灾,利用改进灰狼优化算法(IGWO)和反向传播(BP)神经网络,对城中村火灾风险进行预测。引入非线性收敛因子和变异算子,改进传统灰狼优化算法(GWO),提高算法的全局搜索能力、收敛速度和稳定性,进而构建基于IGWO优化BP神经网络的城中村火灾风险预测模型(IGWO-BP),结合城中村火灾风险因素的复杂性和特殊性制定指标体系,预测火灾风险,并进行实例验证。结果表明:相较于传统GWO、粒子群算法(PSO)、长城算法(GWCA),IGWO在全局搜索能力、收敛速度和稳定性等方面均有显著提升,IGWO-BP模型可通过处理城中村火灾风险指标,实现对火灾风险的预测。

关键词: 改进灰狼优化算法(IGWO), 反向传播(BP)神经网络, 城中村火灾, 风险预测, 变异算子, 高维函数

Abstract:

In order to prevent fires in urban villages, IGWO and BP neural network were used to predict the risk of fires in urban villages. By introducing nonlinear convergence factors and mutation operators, the traditional grey wolf optimizer (GWO) was improved to enhance its global search capability, convergence speed, and stability. Furthermore, a fire risk prediction model for urban villages based on IGWO optimized BP neural network (IGWO-BP) was constructed. Taking into account the complexity and specificity of urban village fire risk factors, an indicator system was developed to predict fire risk, and an empirical study was conducted for verification. The results show that IGWO has significantly improved global search ability, convergence speed, and stability compared to traditional GWO, particle swarm optimization (PSO), and the Great Wall construction algorithm (GWCA). The IGWO-BP model can predict fire risk in urban villages by processing fire risk indicators.

Key words: improved grey wolf optimizer (IGWO), back propagation (BP) neural network, urban villages fire, risk prediction, mutation operator, high-dimensional function

中图分类号: