中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (10): 17-23.doi: 10.16265/j.cnki.issn1003-3033.2024.10.0131

• 安全社会科学与安全管理 • 上一篇    下一篇

基于GWO-BP的震后过渡安置阶段应急物资需求预测

詹伟1(), 程春鑫2,**()   

  1. 1 中国科学院大学 应急管理科学与工程学院,北京 100049
    2 中国科学院大学 工程科学学院,北京 100049
  • 收稿日期:2024-04-22 修回日期:2024-07-24 出版日期:2024-10-28
  • 通信作者:
    ** 程春鑫(1996—),男,河南安阳人,硕士研究生,研究方向为应急管理、项目管理等。E-mail:
  • 作者简介:

    詹 伟 (1973—),男,河南郑州人,博士,副教授,主要从事应急管理、工程与项目管理、风险管理、价值管理等方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金资助(72074202); 中国科学院大学江海智慧安全应急联合实验室研究项目(E242980401)

GWO-BP-based forecasting of emergency material demand in post-earthquake transitional resettlement phase

ZHAN Wei1(), CHENG Chunxin2,**()   

  1. 1 School of Emergency Management Science and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-04-22 Revised:2024-07-24 Published:2024-10-28

摘要:

为精准预测地震灾区过渡性安置阶段的物资需求量,提高应急物资筹措的效率和准确性,收集我国历史地震数据信息,确定对转移安置人口数目影响较大的因素,建立基于灰狼优化算法(GWO)和反向传播(BP)神经网络的安置人口预测模型,结合人口与应急物资间的数量关系,对震后过渡性安置阶段的物资需求量进行预测。结果表明: GWO-BP神经网络模型在预测转移安置人口方面,表现出较高的准确率和稳定性,能有效预测灾区安置人口数量,进而推算出相应的物资需求量。GWO-BP神经网络模型在震后过渡安置阶段的物资需求预测方面具有一定的有效性,能为震后应急物资的筹措决策提供参考。

关键词: 灰狼优化算法(GWO), 反向传播(BP)神经网络, 地震, 过渡安置阶段, 应急物资, 需求预测

Abstract:

In order to accurately predict the material demand in the transitional resettlement stage of earthquakes and improve the efficiency and accuracy of emergency material mobilization, the factors that have a great impact on the number of resettled population were determined based on the historical seismic data in China. A prediction model of the resettled population based on GWO-BP was established, which combined with the quantitative relationship between the population and emergency supplies, to predict the material demand in the transitional resettlement stage after the earthquake. The experimental results show that the GWO-BP neural network model exhibits high accuracy and stability in predicting the number of relocated populations, and can effectively predict the number of relocated populations in disaster areas, thereby calculating the corresponding material demand. GWO-BP neural network model has a certain application value in predicting material demand in post-earthquake transitional resettlement stage, and can provide a reference for the decision-making of emergency material procurement after the earthquake.

Key words: gray wolf optimization algorithm(GWO), back propagation(BP) neural network, earthquake, transitional resettlement phase, emergency material, demand forecasting

中图分类号: