中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (9): 167-175.doi: 10.16265/j.cnki.issn1003-3033.2025.09.1402

• 安全工程技术 • 上一篇    下一篇

融合复杂网络与因果推断的REA风险演化研究

齐心歌(), 刘畅   

  1. 中国民航大学 安全科学与工程学院,天津 300300
  • 收稿日期:2025-04-03 修回日期:2025-06-10 出版日期:2025-09-28
  • 作者简介:

    齐心歌 (1991—),女,山东潍坊人,博士,讲师,主要从事风险分析与防控、飞行数据分析、飞行安全与人为因素等方面的研究。E-mail:

  • 基金资助:
    天津市自然科学基金多元投入项目(23JCQNJC00070)

Research on REA risk evolution by fusing complex network and causal inference

QI Xin'ge(), LIU Chang   

  1. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2025-04-03 Revised:2025-06-10 Published:2025-09-28

摘要:

为优化冲偏出跑道事故(REA)的风险防控策略,提升航空安全管理水平,系统揭示其风险演化机制,基于2008—2020年全球88起典型REA事故报告及大理凤仪机场1 345架次B737-700 快速访问记录器(QAR)数据,构建融合关联规则挖掘(ARM)、加权复杂网络分析与基于独立成分分析的线性非高斯有向无环模型(ICA-LiNGAM)因果图的3级分析框架。首先,采用ARM技术识别高频致因组合,筛选关键风险因素;其次,构建加权复杂网络模型,量化风险因素的耦合强度和网络特性;最后,通过ICA-LiNGAM因果推断方法分析风险因素间的因果关系与风险演化路径。结果表明:复飞决策失误和着陆速度大作为关键枢纽节点,主导风险传播过程;环境因素(如侧风)与操作参数(如进近速度)形成双向因果链,例如侧风导致着陆速度大,效应值达0.201(p<0.001);“人-机-环境”跨域耦合(如高下降率引发的滑跑方向不稳定,效应值达19.713,p<0.05)会触发风险级联效应,需通过跨域协同干预关键节点,以阻断风险传播路径。

关键词: 复杂网络, 因果推断, 冲偏出跑道事故(REA), 风险演化, 关联规则挖掘(ARM)

Abstract:

Runway excursion accidents (REAs) were represented as one of the most frequent threats to aviation safety. To enhance aviation safety management and optimize preventive strategies, it was essential to systematically understand the risk evolution mechanisms underlying REAs. This study develops a three-stage analytical framework-ARM, Weighted Complex Network Analysis, and causal inference based on Linear Non-Gaussian Acyclic Model with Independent Component Analysis (ICA-LiNGAM)-drawing upon 88 representative global REA accident reports (2008-2020) and Quick Access Recorder (QAR) data from 1 345 Boeing 737-700 flights at Dali Fengyi Airport. Firstly, ARM was utilized to identify frequent factor combinations and critical risk elements. Subsequently, a weighted complex network was established to quantify the coupling strength and network properties of these risk factors. Finally, the causal relationships among risk factors and the pathways of risk evolution were analyzed based on the ICA-LiNGAM causal inference method. The results indicate that go-around decision errors and excessive landing speed function as critical hub nodes dominating risk propagation. Environmental factors (e.g., crosswinds) and operational parameters (e.g., approach speed) exhibit bidirectional causal interactions, as evidenced by crosswinds significantly increasing landing speed (Effect value=0.201, p<0.001). This "human-machine-environment" cross-domain evolutiong triggers risk cascades—illustrated by high descent rates inducing runway directional instability (Effect value=19.713,p<0.05)-necessitating cross-domain collaborative interventions targeting critical nodes to disrupt propagation pathways.

Key words: causal inference, complex network, runway excursion accident (REA), risk evolution, association rule mining (ARM)

中图分类号: