中国安全科学学报 ›› 2026, Vol. 36 ›› Issue (1): 130-137.doi: 10.16265/j.cnki.issn1003-3033.2026.01.1196

• 安全技术与工程 • 上一篇    下一篇

侧向多开口地铁列车和隧道温度特征参数预测

吴振坤1,2(), 彭敏2,**(), 朱国庆2, 刘璐2, 秦东子3   

  1. 1 无锡学院 应急管理学院,江苏 无锡 214105
    2 中国矿业大学 安全工程学院,江苏 徐州 221116
    3 中国科学技术大学 火灾科学国家重点实验室,安徽 合肥 230026
  • 收稿日期:2025-09-05 修回日期:2025-11-22 出版日期:2026-01-28
  • 通信作者:
    ** 彭敏(1995—),女,安徽宿州人,博士,副教授,主要从事城市轨道火灾安全研究。E-mail:
  • 作者简介:

    吴振坤 (1990—),男,甘肃张掖人,博士,讲师,主要从事轨道交通火灾防控及监测预警等方面的研究。E-mail:

    朱国庆, 教授。

  • 基金资助:
    国家重点研发计划项目(2023YFC3009900); 国家自然科学基金(52574289); 国家自然科学基金(52204254); 江苏省自然科学基金(BK20221124); 公共火灾防治技术四川省高等学校重点实验室开放基金(SC_KLPFPCT2024Z02)

Study on prediction of temperature characteristic parameters for subway train with multiple lateral openings and tnnnels

WU Zhenkun1,2(), PENG Min2,**(), ZHU Guoqing2, LIU Lu2, QIN Dongzi3   

  1. 1 School of Emergency Management, Wuxi University, Wuxi Jiangsu 214105, China
    2 School of Safety Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
    3 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei Anhui 230026, China
  • Received:2025-09-05 Revised:2025-11-22 Published:2026-01-28

摘要:

为解决现有地铁列车和隧道火灾预测方法大多依赖于物理模型和经验公式而导致预测精度不足的问题,从人工智能角度出发,基于遗传算法(GA)优化反向传神经网络(BPNN),构建GA-BPNN网络模型;利用GA对BPNN的权重和阈值进行全局寻优;训练与预测车厢与隧道顶棚温度分布,智能反演火灾温度场。结果表明:GA-BPNN 模型对车厢温度预测的平均绝对误差(MAE)为8.17,均方根误差(RMSE)为9.76,决定系数R2为0.99;隧道温度预测的MAE为3.95,RMSE为5.63,R2为0.98。通过对比发现,GA-BPNN模型在准确性和泛化能力上都优于传统BPNN模型。

关键词: 侧向多开口, 地铁列车, 温度预测, 特征参数, 反向传播神经网络(BPNN), 遗传算法(GA)

Abstract:

Existing methods for predicting temperature from subway carriage and tunnel fires mainly rely on physical models and empirical methods that are valid only under narrowly-defined environmental conditions. To solve this issue, this study adopts an artificial-intelligence-based approach. A GA-BPNN network model is constructed by optimizing BPNN using a GA. The GA is employed to global optimize BPNN's weights and thresholds, after which the model is trained to predict the temperature distribution of both the subway carriage and the tunnel, thereby achieving intelligent inversion of the fire temperature field. The results show that, for subway carriage temperature prediction, GA-BPNN model yields a mean absolute error (MAE) of 8.17, a root mean square error (RMSE) of 9.76, and a coefficient of determination (R2) of 0.99. For tunnel temperature prediction, MAE is 3.95, RMSE is 5.63, and R2 reaches 0.98. By comparing the results with those of the traditional BPNN, it is found that the GA-BPNN model outperforms the conventional BPNN in both prediction accuracy and generalization capability.

Key words: multiple lateral openings, subway train, temperature prediction, characteristic parameters, back-propagation neural network(BPNN), genetic algorithm(GA)

中图分类号: