[1] |
沈翔, 袁大军. 盾构水平偏角变化对盾构-土相互作用影响[J]. 中国公路学报, 2020, 33(3): 132-143.
doi: 10.19721/j.cnki.1001-7372.2020.03.011
|
|
SHEN Xiang, YUAN Dajun. Influence of shield yawing angle variation on shield-soil interaction[J]. China Journal of Highway and Transport, 2020, 33(3): 132-143.
doi: 10.19721/j.cnki.1001-7372.2020.03.011
|
[2] |
黄威, 任梦, 陈培帅, 等. 盾构水平姿态的理论分析模型[J]. 隧道建设:中英文, 2022, 42(1): 83-89.
|
|
HUANG Wei, REN Meng, CHEN Peishuai, et al. Theoretical analysis model of shield horizontal attitude[J]. Tunnel Construction, 2022, 42(1): 83-89.
|
[3] |
苏栋, 谭毅俊, 沈翔, 等. 软土地层加固对盾构姿态调控及地层变形的影响研究[J]. 现代隧道技术, 2023, 60(2): 138-148,167.
|
|
SU Dong, TAN Yijun, SHEN Xiang, et al. A Study on impact of soft soil stratum reinforcement on the attitude regulation of shield machine and stratum deformation[J]. Modern Tunnelling Technology, 2023, 60(2): 138-148, 167.
|
[4] |
夏汉庸, 尹和军, 徐教煌, 等. 基于机器学习的多施工参数盾构施工姿态预测[J]. 测绘通报, 2021(1): 157-160,164.
doi: 10.13474/j.cnki.11-2246.2021.0030
|
|
XIA Hanyong, YIN Hejun, XU Jiaohuang, et al. Multi-construction parameter shield construction attitude prediction based on machine learning[J]. Bulletin of Surveying and Mapping, 2021(1): 157-160, 164.
doi: 10.13474/j.cnki.11-2246.2021.0030
|
[5] |
|
|
|
[6] |
吴坚, 曾志全, 张亚鹏, 等. 基于循环神经网络的盾构姿态及掘进参数预测[J]. 浙江工业大学学报, 2023, 51(6): 663-670.
|
|
WU Jian, ZENG Zhiquan, ZHANG Yapeng, et al. Prediction of shield posture and tunneling parameters based on recurrent neural network[J]. Journal of Zhejiang University of Technology, 2023, 51(6): 663-670.
|
[7] |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 6 639-6 649.
|
[8] |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
|
[9] |
JUNG J, CHUNG H, KWON Y, et al. An ANN to predict ground condition ahead of tunnel face using TBM operational data[J]. KSCE Journal of Civil Engineering, 2019, 23(7): 3 200-3 206.
|
[10] |
刘茜. 基于智能方法的盾构施工参数预测和优化控制[D]. 武汉: 华中科技大学, 2022.
|
|
LIU Xi. Prediction and optimal control of shield construction parameters based on intelligent methods[D]. Wuhan: Huazhong University of Science and Technology, 2022.
|
[11] |
张利冬, 宋泽阳, 罗振敏, 等. 基于机器学习的煤自然发火期预测[J]. 中国安全科学学报, 2022, 32(12): 118-124.
doi: 10.16265/j.cnki.issn1003-3033.2022.12.0134
|
|
ZHANG Lidong, SONG Zeyang, LUO Zhenmin, et al. Prediction of coal spontaneous combustion period based on machine learning[J]. China Safety Science Journal, 2022, 32(12): 118-124.
doi: 10.16265/j.cnki.issn1003-3033.2022.12.0134
|
[12] |
吴忠坦, 吴贤国, 刘俊, 等. 基于随机森林-NSGA-Ⅲ的盾构姿态优化控制[J]. 现代隧道技术, 2023, 60(5): 48-57.
|
|
WU Zhongtan, WU Xianguo, LIU Jun, et al. Shield attitude optimization and control based on random forest-NSGA-Ⅲ[J]. Modern Tunnelling Technology, 2023, 60(5): 48-57.
|
[13] |
吴贤国, 冯宗宝, 刘俊, 等. 基于RF-NSGA-Ⅱ的盾构施工地表沉降安全控制多目标优化[J]. 中国安全科学学报, 2022, 32(8): 45-51.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702
|
|
WU Xianguo, FENG Zongbao, LIU Jun, et al. Multi-objective optimization of surface settlement safety control during shield construction based on RF-NSGA-Ⅱ[J]. China Safety Science Journal, 2022, 32(8): 45-51.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.2702
|