中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (8): 69-77.doi: 10.16265/j.cnki.issn1003-3033.2024.08.1360

• 安全工程技术 • 上一篇    下一篇

基于CatBoost-NSGA-III算法的盾构姿态预测与优化

吴贤国1(), 刘俊1, 曹源1, 雷宇1,**(), 李士范1, 覃亚伟1,2   

  1. 1 华中科技大学 土木与水利工程学院,湖北 武汉 430074
    2 武汉华中科大检测科技有限公司,湖北 武汉 430074
  • 收稿日期:2024-02-21 修回日期:2024-05-28 出版日期:2024-08-28
  • 通信作者:
    ** 雷宇(2001—),男,湖南益阳人,硕士研究生,研究方向为土木工程建造与管理。E-mail:
  • 作者简介:

    吴贤国 (1964—),女,湖北武汉人,博士,教授,主要从事数字工程集成建设关键技术及应用、隧道工程施工与运营安全监控等方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金(51378235); 国家自然科学基金(71571078); 国家自然科学基金(51308240); 国家重点研发计划项目(2016YFC0800208); 2021年度市教委科学技术研究计划青年项目(KJQN202103801)

Shield attitude prediction and optimization based on CatBoost-NSGA-III algorithm

WU Xianguo1(), LIU Jun1, CAO Yuan1, LEI Yu1,**(), LI Shifan1, QIN Yawei1,2   

  1. 1 School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology,Wuhan Hubei 430074, China
    2 Wuhan Huazhong University of Science and Technology Test Technology Co., Ltd., Wuhan Hubei 430074, China
  • Received:2024-02-21 Revised:2024-05-28 Published:2024-08-28

摘要:

为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R2范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。

关键词: 类别型特征梯度提升(CatBoost), 第三代非支配排序遗传算法(NSGA-Ⅲ), 盾构姿态, 多目标优化, 重要性排序

Abstract:

To solve the problems such as forward tilt deformation, serpentine shape, axis deviation and correction during shield tunneling, which affected the safety and efficiency of shield construction, a multi-objective optimization method of shield attitude combining CatBoost and NSGA-Ⅲ was proposed. Taking Guiyang Metro as the background, 22 influencing factors were selected as input parameters, and the nonlinear mapping function relationship between input parameters and shield attitude was established by using CatBoost algorithm. The importance of input parameters was evaluated by random forest (RF) algorithm. A CatBoost-NSGA-Ⅲ multi-objective optimization model was established to minimize the absolute value of the shield attitude, and the applicability and effectiveness of the proposed method were verified by a case study. The results show that the prediction model obtained by using CatBoost algorithm to train engineering measured data has high accuracy, and the R2 range of 5 shield attitude targets is 0.916-0.943. By using the CatBoost-NSGA-Ⅲ multi-objective optimization method, the attitude of the shield can be optimized significantly, and the average value of the overall improvement is 53.34%.

Key words: categorical boosting (CatBoost), non-dominated sorting genetic algorithm-Ⅲ (NSGA-Ⅲ), shield attitude, multi-objective optimization, importance ranking

中图分类号: