中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 28-34.doi: 10.16265/j.cnki.issn1003-3033.2025.04.0960

• 安全工程技术 • 上一篇    下一篇

基于改进YOLOX的隧道火灾检测算法

马庆禄 教授(), 邱高建, 白锋   

  1. 重庆交通大学 交通运输学院,重庆 400074
  • 收稿日期:2024-11-15 修回日期:2025-01-19 出版日期:2025-04-28
  • 作者简介:

    马庆禄 (1980—),男,陕西渭南人,博士,教授,主要从事自动驾驶、智能交通、交通安全等方面的研究。E-mail:

  • 基金资助:
    重庆市自然科学基金面上项目资助(CSTB2023NSCQ-MSX0551); 交通部三峡库区奉建高速公路安全智能建造科技示范工程项目(Z29210003); 2024年研究生科研创新项目(2024S0078); 2024年研究生科研创新项目(CYS240483)

Tunnel initial fire detection method based on improved YOLOX algorithm

MA Qinglu(), QIU Gaojian, BAI Feng   

  1. School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2024-11-15 Revised:2025-01-19 Published:2025-04-28

摘要:

针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字塔网络(BiFPN)增强特征提取和融合能力,优化α-交并比(IoU)损失函数,以提高对轮廓特征不明显的隧道初期烟雾火焰的检测精度;在现有公开数据集不足的情况下,通过网络采集、模拟试验和扩充现有数据集,构建隧道火灾数据集,在包含真实场景和模拟场景的自建隧道火灾数据集上进行验证。结果表明:相比于原始YOLOX模型,改进后的算法均值平均精度(mAP@0.5)提高1.89%,mAP@0.5~0.95提高0.88%,精确率提高4.57%,召回率提高5.45%,改进后的算法能够实现更优的检测性能。

关键词: 隧道火灾, YOLOX, 火灾检测, 归一化注意力模块(NAM), 加权双向特征金字塔网络(BiFPN)

Abstract:

To address the issues of complex environmental interference and low recognition rates in early-stage tunnel fire detection, an improved YOLOX-based detection method, YOLOX-T, was proposed. The proposed method incorporated a NAM into the YOLOX network to suppress environmental noise and interference, thereby enhancing the model's robustness. A weighted BiFPN was integrated to improve multi-scale feature extraction and fusion. Furthermore, an α-IoU(Intersection over Union) loss function was employed to enhance the detection accuracy of early-stage tunnel smoke and flames, which often exhibit indistinct contours. Addressing the scarcity of publicly available datasets, a tunnel fire dataset encompassing both real-world and simulated scenarios was constructed through web data acquisition, simulated fire experiments, and the augmentation of existing datasets. Experimental results on the self-built dataset demonstrate that, compared to the original YOLOX model, the YOLOX-T method achieves improvements of 1.89% in mean Average Precision (mAP@0.5), 0.88% in mAP@0.5~0.95, 4.57% in precision, and 5.45% in recall. The improved algorithm can achieve better detection performance.

Key words: tunnel fire, YOLOX, normalization-based attention module (NAM), bidirectional feature pyramid network (BiFPN), fire detection

中图分类号: