[1] |
何满潮, 武毅艺, 高玉兵, 等. 深部采矿岩石力学进展[J]. 煤炭学报, 2024, 49(1):75-99.
|
|
HE Manchao, WU Yiyi, GAO Yubing, et al. Research progress of rock mechanics in deep mining[J]. Journal of China Coal Society, 2024, 49(1): 75-99.
|
[2] |
郭平业, 卜墨华, 张鹏, 等. 高地温隧道灾变机制与灾害防控研究进展[J]. 岩石力学与工程学报, 2023, 42(7): 1561-1581.
|
|
GUO Pingye, BU Mohua, ZHANG Peng, et al. Review on catastrophe mechanism and disaster countermeasure of high geotemperature tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1561-1581.
|
[3] |
郭平业, 卜墨华, 张鹏, 等. 矿山地热防控与利用研究进展[J]. 工程科学学报, 2022, 44(10): 1632-1651.
|
|
GUO Pingye, BU Mohua, ZHANG Peng, et al. Research progress on the prevention and utilization of mine geothermal energy[J]. Chinese Journal of Engineering, 2022, 44(10): 1632-1651.
|
[4] |
马恒, 尹彬, 刘剑. 矿井风流温度预测分析研究[J]. 中国安全科学学报, 2010, 20(11): 91-95.
|
|
MA Heng, YIN Bin, LIU Jian. Analytical study on the prediction of mine airflow temperature[J]. China Journal of Safety Science, 2010, 20(11): 91-95.
|
[5] |
BASCOMPTA M, ROSSELL J M, SANMIQUEL L, et al. Temperature prediction model in the main ventilation system of an underground mine[J]. Applied Sciences 2020, 20(10): DOI: 0.3390/app10207238.
|
[6] |
ZHOU Gang, CHENG Weimin, NIE Wen, et al. Prediction and study of air thermal parameters in unexploited mine regions based on temperature prediction model in whole ventilation network[J]. Procedia Engineering. 2011, 26: 751-758.
|
[7] |
孔松, 吴建松, 孙广京, 等. 高温矿井进风井筒及巷道风温预测[J]. 煤矿安全, 2015, 46(10): 199-202.
|
|
KONG Song, WU Jiansong, SUN Guangjing, et al. Prediction of wind temperature in intake shafts and roadways of high temperature mines[J]. Coal Mine Safety, 2015, 46(10): 199-202.
|
[8] |
何启林, 任克斌. 深井建井期入风井筒风温的预测[J]. 煤炭工程, 2002, (8): 47-48.
|
|
HE Qilin, REN Kebin. Prediction of wind temperature in the shaft during the construction period of deep wells[J]. Coal Engineering, 2002, (8): 47-48.
|
[9] |
张翔, 王佰顺, 徐硕, 等. 基于PSO-BP的矿井淋水井筒风温预测[J]. 煤矿安全, 2012, 43(11): 178-181.
|
|
ZHANG Xiang, WANG Baishun, XU Shuo, et al. Prediction of wind temperature in mine drench shaft based on PSO-BP[J]. Coal Mine Safety, 2012, 43(11): 178-181.
|
[10] |
马恒, 刘亮亮. 基于T-S模糊神经网络的淋水井筒温度预测分析[J]. 世界科技研究与发展, 2015, 37(3): 226-229.
|
|
MA Heng, LIU Liangliang. Temperature prediction analysis of drenching wellbore based on T-S fuzzy neural network[J]. World Science and Technology Research and Development, 2015, 37(3): 226-229.
|
[11] |
吕品, 左金宝, 倪小军. 基于BP神经网络的矿井淋水井筒风温预测[J]. 煤矿安全, 2008, 39(12): 11-13.
|
|
LYU Pin, ZUO Jinbao, NI Xiaojun. Prediction of air temperature in mine drenching shaft based on BP neural network[J]. Coal Mine Safety, 2008, 39(12): 11-13.
|
[12] |
纪俊红, 马铭阳, 崔铁军, 等. GSK-XGBoost模型在井底风温预测中的应用[J]. 中国安全生产科学技术, 2022, 18(3): 131-136.
|
|
JI Junhong, MA Mingyang, CUI Tiejun, et al. Application of GSK-XGBoost model in prediction of wind temperature at well bottom[J]. Journal of Safety Science and Technology, 2022, 18(3): 131-136.
|
[13] |
高佳南, 马乐天, 白金阳, 等. 基于GA-BP神经网络的淋水井筒风温预测模型[J]. 中国矿业, 2023, 32(11): 96-101.
|
|
GAO Jia'nan, MA Letian, BAI Jinyang, et al. Prediction model of airflow temperature of shaft with water dropping based on GA-BP Neural Network[J]. China Mining Magazine, 2023, 32(11): 96-101.
|
[14] |
程磊, 李正健, 史浩镕, 等. 基于PSO-Elman神经网络的井底风温预测模型[J]. 工矿自动化, 2024, 50(1): 131-137.
|
|
CHENG Lei, LI Zhengjian, SHI Haorong, et al. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137.
|
[15] |
ZHANG Maoqing, LI Wuzhao, ZHANG Liang, et al. A Pearson correlation-based adaptive variable grouping method for large-scale multi-objective optimization[J]. Information Sciences, 2023, 639: DOI: 10.1016/j.ins.2023.02.055.
|
[16] |
ABDEL-BASSET M, MOHAMED R, AZEEM S A A, et al. Kepler optimization algorithm: a new metaheuristic algorithm inspired by Kepler's laws of planetary motion[J]. Knowledge-Based Systems, 2023, 268: DOI: 10.1016/j.knosys.2023.110454.
|
[17] |
王兴隆, 许晏丰. 基于AM-LSTM的飞行区航空器滑行轨迹预测与冲突识别[J]. 中国安全科学学报, 2024, 34(1): 116-124.
|
|
WANG Xinglong, XU Yanfeng. Aircraft taxiing trajectory prediction and conflict risk identification in airfield area based on AM-LSTM[J]. China Safety Science Journal, 2024, 34(1): 116-124.
|
[18] |
林海香, 卢冉, 陆人杰, 等. 融合BiLSTM-CBA组合模型的高铁车载设备故障诊断[J]. 中国安全科学学报, 2022, 32(6): 79-86.
|
|
LIN Haixiang, LU Ran, LU Renjie, et al. Fault diagnosis of high-speed railway on-board equipment based on BiLSTM-CBA hybrid model[J]. China Safety Science Journal, 2022, 32(6): 79-86.
|
[19] |
LI Ziqi. Extracting spatial effects from machine learning model using local interpretation method: an example of SHAP and XGBoost[J]. Computers, Environment and Urban Systems, 2022, 96: DOI: 10.1016/j.compenvurbsys.2022.101845.
|