[1] |
TOPKAYA I S, ERDOGAN H, PORIKLI F. Counting people by clustering person detector outputs[C]. 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2014: 313-318.
|
[2] |
CHAN A B, VASCONCELOS N. Bayesian poisson regression for crowd counting[C]. 2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009: 545-551.
|
[3] |
ZHANG Yingying, ZHOU Desen, CHEN Siqin, et al. Single-image crowd counting via multi-column convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 589-597.
|
[4] |
徐丹, 代勇, 纪军红. 基于卷积神经网络的驾驶人行为识别方法研究[J]. 中国安全科学学报, 2019, 29(10): 12-17.
doi: 10.16265/j.cnki.issn1003-3033.2019.10.003
|
|
XU Dan, DAI Yong, JI Junhong. Research on driver behavior recognition method based on convolutional neural network[J]. China Safety Science Journal, 2019, 29(10): 12-17.
doi: 10.16265/j.cnki.issn1003-3033.2019.10.003
|
[5] |
熊若鑫, 宋元斌, 王宇轩, 等. 基于CNN的3D姿势估计在建筑工人行为分析中的应用[J]. 中国安全科学学报, 2019, 29(7): 64-69.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.011
|
|
XIONG Ruoxin, SONG Yuanbin, WANG Yuxuan, et al. Application of convolutional neural network-based 3D posture estimation in behavioral analysis of construction workers[J]. China Safety Science Journal, 2019, 29(7): 64-69.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.011
|
[6] |
吴思, 张旭光, 方银锋. 基于注意力机制的人群计数方法[J]. 中国安全科学学报, 2022, 32(1): 127-134.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.017
|
|
WU Si, ZHANG Xuguang, FANG Yinfeng. Method of crowd counting based on attention mechanism[J]. China Safety Science Journal, 2022, 32(1): 127-134.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.017
|
[7] |
LI Yuhong, ZHANG Xiaofan, CHEN Deming. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1091-1100.
|
[8] |
CHAN A B, LIANG Z S J, VASCONCELOS N. Privacy preserving crowd monitoring: counting people without people models or tracking[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-7.
|
[9] |
GUO Bin, WANG Zhu, YU Zhiwen, et al. Mobile crowd sensing and computing: the review of an emerging human-powered sensing paradigm[J]. ACM Computing Surveys (CSUR), 2015, 48(1): 1-31.
|
[10] |
SHENG Xiang, TANG Jian, XIAO Xuejie, et al. Leveraging GPS-less sensing scheduling for green mobile crowd sensing[J]. IEEE Internet of Things Journal, 2014, 1(4): 328-336.
doi: 10.1109/JIOT.2014.2334271
|
[11] |
YANG Yifan, LI Guorong, WU Zhe, et al. Weakly-supervised crowd counting learns from sorting rather than locations[C]. European Conference on Computer Vision. Springer, Cham, 2020: 1-17.
|
[12] |
LEI Yinjie, LIU Yan, ZHANG Pingping, et al. Towards using count-level weak supervision for crowd counting[J]. Pattern Recognition (PR), 2021, 109:DOI: 10.1016/j.patcog.2020.107616.
doi: 10.1016/j.patcog.2020.107616
|
[13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Advances in Neural Information Processing Systems, 2017: 5998-6008.
|
[14] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv preprint, 2020:DOI: 10.48850/arXiv.2010.11929.
doi: 10.48850/arXiv.2010.11929
|
[15] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10 012-10 022.
|
[16] |
LIANG Dingkang, CHEN Xiwu, XU Wei, et al. TransCrowd: weakly-supervised crowd counting with transformers[J]. Science China Information Sciences, 2022, 65(6): 1-14.
|
[17] |
doi: 10.48550/arXiv.1312.4400
|
[18] |
IDREES H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 532-546.
|
[19] |
LIU Xialei, VAN D W J, BAGDANOV A D. Exploiting unlabeled data in cnns by self-supervised learning to rank[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1862-1878.
doi: 10.1109/TPAMI.2019.2899857
pmid: 30794168
|
[20] |
KALYANI G, JANAKIRAMAIAH B, PRASAD L V, et al. Efficient crowd counting model using feature pyramid network and ResNeXt[J]. Soft Computing, 2021, 25(15): 10 497-10 507.
|
[21] |
MA Zhiheng, WEI Xing, HONG Xiaopeng, et al. Bayesian loss for crowd count estimation with point supervision[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6142-6151.
|
[22] |
WANG Boyu, LIU Huidong, SAMARAS D, et al. Distribution matching for crowd counting[J]. Advances in Neural Information Processing Systems, 2020, 33: 1595-1607.
|
[23] |
JIANG Xiaolong, XIAO Zehao, ZHANG Baochang, et al. Crowd counting and density estimation by trellis encoder-decoder networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6133-6142.
|
[24] |
LIU Weizhe, SALZMANN M, FUA P. Context-aware crowd counting[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5099-5108.
|
[25] |
XIONG Haipeng, LU Hao, LIU Chengxin, et al. From open set to closed set: counting objects by spatial divide-and-conquer[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8362-8371.
|
[26] |
LIU Lingbo, QIU Zhilin, LI Guanbin, et al. Crowd counting with deep structured scale integration network[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1774-1783.
|