中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 152-157.doi: 10.16265/j.cnki.issn1003-3033.2025.04.1578

• 安全工程技术 • 上一篇    下一篇

基于四维风险预测的城市医疗废物运输网络优化

陈剑锋(), 赵佳虹 副教授**(), 刘思雨   

  1. 广东工业大学 土木与交通工程学院,广东 广州 510006
  • 收稿日期:2024-11-24 修回日期:2025-02-14 出版日期:2025-04-28
  • 通信作者:
    **赵佳虹(1986—),女,山西朔州人,博士,副教授,主要从事危险废物运输安全方面的研究。E-mail:
  • 作者简介:

    陈剑锋 (2000—),男,广东湛江人,硕士研究生,主要研究方向为危险废物运输、应急管理和运输安全管理。E-mail:

  • 基金资助:
    国家自然科学基金资助(61803091); 广东省自然科学基金资助(2022A1515010192); 广东省自然科学基金资助(2025A1515010200); 四川省自然科学基金资助(2025ZNSFSCO394)

Optimization of urban medical waste transportation network based on four-dimensional risk prediction

CHEN Jianfeng(), ZHAO Jiahong**(), LIU Siyu   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou Guangdong 510006, China
  • Received:2024-11-24 Revised:2025-02-14 Published:2025-04-28

摘要:

为提高城市医疗废物回收处置的安全性,提出一类基于四维风险预测的医疗废物运输网络优化建模与求解方法。首先,根据医疗废物病毒的环境传播特征和城市应急系统的时变特性,采用反向传播(BP)神经网络模型模拟风险的动态演化过程,设计四维风险预测模型;其次,引入车辆载重和容量双重约束,采用双商品流建模方法,构建总成本和总风险最小的运输网络优化模型;然后,根据模型复杂度,基于改进的非支配排序遗传算法(NSGA-Ⅱ)设计求解步骤;最后,以上海实例和多个测试验证模型和方法的有效性。结果表明:新模型和新算法能够在672 s内求得多个有效方案,并保有一定的参数敏感性;相较于传统的风险模型,新建的四维风险预测模型可分别降低3.47%的总成本和13.04%的总风险;相较于现行的优化方案,模型引入风险预测方法,能够降低7.41%的总风险;相较于常规的多目标优化方法,新算法能够缩短至少49.44%的求解时间,并在求解不同规模的优化问题时,保有较高的稳定性。

关键词: 四维风险预测, 医疗废物运输网络, 反向传播(BP)神经网络, 多目标, 非支配排序遗传算法(NSGA-Ⅱ)

Abstract:

To improve the safety of urban medical waste recycling and disposal, an optimization methodology for the medical waste transportation network was proposed, where the facility location, vehicle-routing and vehicle acquisition were simultaneously optimized. Firstly, according to the environmental transmission characteristic of medical waste viruses and uncertainty of urban emergency response time, BP neural network model was used to simulate the dynamic evolution process of risk, and a four-dimensional prediction model was designed. Secondly, introducing vehicle volume and capacity constraints, an optimization model, minimizing the total cost and risk, was developed by two-commodity flow formulation. The solution procedure was also developed by improving the NSGA-II algorithm based on the complexity of model. Finally, a case study in Shanghai and several tests were provided to demonstrate the workability. The computational results show that the new model and approach can provide multiple efficient plans within 672 seconds, and they are sensitive to some parameters. Compared to the traditional risk assessment, new model can provide a reduction of 3.47% and 13.04% in total cost and risk respectively. Using the risk prediction technique, a decrement of 7.41% in total risk can be achieved when comparing to current policy. New algorithm can reduce the CPU time by at least 49.44% and keep stable performance in solving problems of different scales while comparing to traditional multi-objective optimal methods.

Key words: four-dimensional risk prediction, medical waste transportation network, back propagation (BP) neural network, multi-objective, non-dominant sorting genetic algorithm Ⅱ(NSGA-Ⅱ)

中图分类号: