China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (11): 220-228.doi: 10.16265/j.cnki.issn1003-3033.2024.11.0171
• Occupational health • Previous Articles Next Articles
HU Xiaofeng1,2,3(), HUANG Ling1
Received:
2024-05-11
Revised:
2024-08-10
Online:
2024-11-28
Published:
2025-01-04
CLC Number:
HU Xiaofeng, HUANG Ling. Heat stress prediction model for outdoor policeman based on machine learning[J]. China Safety Science Journal, 2024, 34(11): 220-228.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.11.0171
Table 1
Experimental conditions
组别 | 温度/℃ | 相对湿度/% | 作业强度 | 服装 |
---|---|---|---|---|
1 | 34 | 60 | 轻度 | 警服 |
2 | 36 | 60 | 轻度 | 警服 |
3 | 38 | 60 | 轻度 | 警服 |
4 | 40 | 60 | 轻度 | 警服 |
5 | 34 | 60 | 中度 | 警服 |
6 | 36 | 60 | 中度 | 警服 |
7 | 38 | 60 | 中度 | 警服 |
8 | 40 | 60 | 中度 | 警服 |
9 | 34 | 60 | 重度 | 警服 |
10 | 36 | 60 | 重度 | 警服 |
11 | 38 | 60 | 重度 | 警服 |
12 | 40 | 60 | 重度 | 警服 |
13 | 38 | 60 | 轻度 | 便服 |
14 | 34 | 60 | 中度 | 便服 |
15 | 36 | 60 | 中度 | 便服 |
16 | 38 | 60 | 中度 | 便服 |
17 | 40 | 60 | 中度 | 便服 |
组别 | 温度/℃ | 相对湿度/% | 作业强度 | 服装 |
18 | 38 | 60 | 重度 | 便服 |
19 | 36 | 30 | 轻度 | 警服 |
20 | 38 | 30 | 轻度 | 警服 |
Table 4
Evaluation results of KNN model on core temperature prediction performance of each time node
因变量 | MSE | RMSE | MAE | R2 | |
---|---|---|---|---|---|
核心 温度 | 节点1 | 0.003 | 0.058 | 0.010 | 0.999 |
节点2 | 0.004 | 0.065 | 0.013 | 0.995 | |
节点3 | 0.000 | 0.014 | 0.003 | 1.000 | |
节点4 | 0.002 | 0.039 | 0.008 | 0.997 | |
节点5 | 0.002 | 0.045 | 0.009 | 0.996 | |
节点6 | 0.009 | 0.093 | 0.013 | 0.977 | |
节点7 | 0.003 | 0.055 | 0.011 | 0.981 | |
节点8 | 0.003 | 0.054 | 0.010 | 0.978 | |
节点9 | 0.002 | 0.048 | 0.009 | 0.978 | |
节点10 | 0.002 | 0.045 | 0.009 | 0.979 | |
节点11 | 0.003 | 0.053 | 0.009 | 0.975 | |
节点12 | 0.004 | 0.063 | 0.013 | 0.975 | |
节点13 | 0.003 | 0.056 | 0.012 | 0.982 |
Table 6
Importance scores of eigenvalues for core temperature prediction model and heat stress risk prediction model
核心温度预测模型 | 热应激风险预测模型 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RF | GBDT | RF | GBDT | ||||||||
特征 | 重要性得分 | 特征 | 重要性得分 | 特征 | 重要性得分 | 特征 | 重要性得分 | ||||
环境温度 | 0.29 | 环境温度 | 0.3 | 环境温度 | 0.27 | 环境温度 | 0.31 | ||||
PAR | 0.23 | PAR | 0.22 | PAR | 0.24 | PAR | 0.27 | ||||
相对湿度 | 0.18 | 年龄 | 0.19 | CI | 0.11 | 体脂率 | 0.12 | ||||
年龄 | 0.13 | 相对湿度 | 0.17 | 体脂率 | 0.1 | 体质量 | 0.098 | ||||
体脂率 | 0.074 | 体脂率 | 0.058 | 体质量 | 0.097 | CI | 0.083 | ||||
CI | 0.039 | CI | 0.026 | 身高 | 0.069 | 身高 | 0.067 | ||||
体质量 | 0.03 | 体质量 | 0.016 | 年龄 | 0.052 | 年龄 | 0.036 | ||||
身高 | 0.027 | 身高 | 0.012 | 相对湿度 | 0.036 | 相对湿度 | 0.02 | ||||
性别 | 0.008 6 | 性别 | 0.008 1 | 性别 | 0.029 | 性别 | 0.002 9 |
[1] |
|
[2] |
|
[3] |
|
[4] |
安启启, 徐刚, 杨杰, 等. 高温高湿环境下人体热生理模型的检验及应用[J]. 西安科技大学学报, 2021, 41(2):253-261.
|
|
|
[5] |
李春艺, 李川, 闫肖岳, 等. 户外高温环境建筑工人热应激预测分析评价[J]. 劳动保护, 2022(6):78-82.
|
[6] |
吴建松, 李乐天, 韩新阳, 等. 高温户外环境电网作业人员热应激预测评价[J]. 中国安全生产科学技术, 2021, 17(12):169-175.
|
|
|
[7] |
聂兴信, 王廷宇, 孙锋刚, 等. 高温矿井热湿环境对人体机能的影响[J]. 金属矿山, 2020(4):186-193.
|
|
|
[8] |
柯莹, 周文. 个体降温服降温效应评价指标及方法[J]. 服装学报, 2021, 6(1):1-7.
|
|
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
doi: 10.1111/j.1600-0668.2011.00747.x pmid: 21955322 |
[17] |
doi: 10.1016/j.apergo.2015.03.014 pmid: 25959333 |
[18] |
|
[19] |
|
[20] |
|
[21] |
ISO 8996-2021,Ergonomics of the thermal environment:determination of metabolic rate[S].
|
[22] |
范淼. 机器学习及实践:从零开始通往Kaggle竞赛之路[M]. 北京: 清华大学出版社, 2016:183.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
doi: 10.17849/insm-47-01-31-39.1 pmid: 28836909 |
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[1] | LI Miao, LI Lingbo, ZUO Zhiheng, ZHANG Li, JIANG Luxin, SU Huai. Machine learning-based recognition for recognizing operating conditions of multi-product pipelines [J]. China Safety Science Journal, 2024, 34(6): 127-135. |
[2] | XIAO Guosong, LIU Jiachen, ZHANG Yuanshan, DONG Lei, CHEN Xi. Explainable prediction for hard landing of civil aircraft based on LightGBM-SHAP [J]. China Safety Science Journal, 2024, 34(10): 134-142. |
[3] | NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces [J]. China Safety Science Journal, 2024, 34(1): 238-246. |
[4] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[5] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[6] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[7] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[8] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[9] | DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses [J]. China Safety Science Journal, 2023, 33(4): 100-106. |
[10] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[11] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[12] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
[13] | ZHENG Guozhong, DAI Wei. Simulation of heat stress of people wearing medical protective clothing in summer [J]. China Safety Science Journal, 2023, 33(1): 221-226. |
[14] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[15] | CHEN Yongqiang, WU Zhipeng, YANG Xiangjuan, CHEN Pu, SUN Shuli. Review on regional seismic analysis software [J]. China Safety Science Journal, 2022, 32(9): 126-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||