China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (7): 127-132.doi: 10.16265/j.cnki.issn1003-3033.2023.07.2235
• Safety engineering technology • Previous Articles Next Articles
WANG Wei1,2(), LIANG Ran1,**(
), QI Yun1,2, JIA Baoshan2,3, WU Zewei1
Received:
2023-02-17
Revised:
2023-05-08
Online:
2023-07-28
Published:
2024-01-28
Contact:
LIANG Ran
WANG Wei, LIANG Ran, QI Yun, JIA Baoshan, WU Zewei. Prediction model of coal spontaneous combustion risk based on PSO-BPNN[J]. China Safety Science Journal, 2023, 33(7): 127-132.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.07.2235
Tab.2
Comparison between real value and predicted value of BPNN
序号 | 真实值 | 预测值 | 绝对误差 | 相对误差/% |
---|---|---|---|---|
1 | 3 | 2.815 4 | 0.184 6 | 6.15 |
2 | 3 | 2.943 1 | 0.056 9 | 1.90 |
3 | 2 | 1.909 5 | 0.090 5 | 4.52 |
4 | 1 | 0.815 5 | 0.184 5 | 18.45 |
5 | 2 | 2.619 5 | 0.619 5 | 30.98 |
6 | 1 | 1.024 2 | 0.024 2 | 2.42 |
7 | 1 | 1.202 7 | 0.202 7 | 20.27 |
8 | 3 | 2.546 1 | 0.453 9 | 15.13 |
9 | 2 | 1.612 7 | 0.387 3 | 19.36 |
10 | 1 | 1.181 1 | 0.181 1 | 18.11 |
Tab.3
Comparison between PSO-BPNN predicted value and real value
序号 | 真实值 | 预测值 | 绝对误差 | 相对误差/% |
---|---|---|---|---|
1 | 3 | 2.989 5 | 0.010 5 | 0.35 |
2 | 3 | 3.016 4 | 0.016 4 | 0.55 |
3 | 2 | 1.940 5 | 0.059 5 | 2.98 |
4 | 1 | 0.863 5 | 0.136 5 | 13.65 |
5 | 2 | 1.795 8 | 0.204 2 | 10.21 |
6 | 1 | 0.988 5 | 0.011 5 | 1.15 |
7 | 1 | 0.986 5 | 0.013 5 | 1.35 |
8 | 3 | 2.965 8 | 0.034 2 | 1.14 |
9 | 2 | 2.134 9 | 0.134 9 | 6.75 |
10 | 1 | 0.943 1 | 0.056 9 | 5.69 |
Tab.4
Comparison between SVR predicted value and real value
序号 | 真实值 | 预测值 | 绝对误差 | 相对误差/% |
---|---|---|---|---|
1 | 3 | 2.494 1 | 0.505 9 | 16.86 |
2 | 3 | 3.083 8 | 0.083 8 | 2.79 |
3 | 2 | 1.444 8 | 0.555 2 | 27.76 |
4 | 1 | 1.109 3 | 0.109 3 | 10.93 |
5 | 2 | 2.044 9 | 0.044 9 | 2.25 |
6 | 1 | 1.025 4 | 0.025 4 | 2.54 |
7 | 1 | 0.998 2 | 0.001 8 | 0.18 |
8 | 3 | 2.781 6 | 0.218 4 | 7.28 |
9 | 2 | 1.975 2 | 0.024 8 | 1.24 |
10 | 1 | 1.260 3 | 0.260 3 | 26.03 |
[1] |
doi: 10.1016/j.psep.2022.03.074 |
[2] |
周亮, 戴广龙, 秦汝祥. 高瓦斯易自燃煤层采空区遗煤自燃影响因素研究[J]. 中国安全科学学报, 2018, 28(2): 122-127.
doi: 10.16265/j.cnki.issn1003-3033.2018.02.021 |
doi: 10.16265/j.cnki.issn1003-3033.2018.02.021 |
|
[3] |
常绪华, 罗乾坤. 基于改进博弈论采空区煤自燃危险性可拓评价[J]. 矿业安全与环保, 2022, 49(4):211-218.
|
|
|
[4] |
汪伟, 贾宝山, 祁云. 改进CRITIC修正G2-TOPSIS的钻孔自燃预测模型及应用[J]. 中国安全科学学报, 2019, 29(11):26-31.
doi: 10.16265/j.cnki.issn1003-3033.2019.11.005 |
doi: 10.16265/j.cnki.issn1003-3033.2019.11.005 |
|
[5] |
祁云, 齐庆杰, 汪伟, 等. 基于集值统计-Entropy的采空区自燃危险性预测模型及应用[J]. 安全与环境学报, 2019, 19(5):1526-1531.
|
|
|
[6] |
孟倩. 基于计算智能的煤矿自然发火预警研究[D]. 徐州: 中国矿业大学, 2015.
|
|
|
[7] |
邢媛媛, 张飞飞. 基于AEM-TOPSIS的煤炭自燃风险评价研究[J]. 煤炭工程, 2021, 53(11):131-134.
|
|
|
[8] |
邓念东, 丁一, 邢聪聪, 等. 基于PCA-BP神经网络的风积砂充填体强度预测[J]. 矿业研究与开发, 2021, 41 (2):109-113.
|
|
|
[9] |
林海飞, 高帆, 严敏, 等. 煤层瓦斯含量PSO-BP神经网络预测模型及其应用[J]. 中国安全科学学报, 2020, 30(9):80-87.
|
|
|
[10] |
朱红青, 常文杰, 张彬. 回采工作面瓦斯涌出BP神经网络分源预测模型及应用[J]. 煤炭学报, 2007, 32 (5): 504-508.
|
|
|
[11] |
梁盛开, 曹琼, 罗杨阳. 煤矿瓦斯突出的神经网络预测[J]. 固体力学学报, 2010, 31(增1):180-183.
|
|
|
[12] |
鲁学富. 基于GA-SVM的采空区煤自燃预警技术研究及应用[D]. 西安: 西安科技大学, 2020.
|
|
[1] | ZHOU Yi, PENG Guowen, HUANG Zhao, YANG Pengfei, LIU Dandan, CHEN Xiaoli. Intelligent monitoring and prediction of deformation of uranium tailings dam based on SBAS-InSAR and BPNN [J]. China Safety Science Journal, 2024, 34(4): 145-152. |
[2] | YANG Xiangqian, ZHANG Pingru, WU Shengnan, ZHANG Laibin, LI Zhong, FENG Huanzhi. Early prediction and warning of offshore drilling overflow based on data model collaboration [J]. China Safety Science Journal, 2024, 34(4): 93-100. |
[3] | LI Min, LUO Ouwen, LU Yi, SHI Shiliang, LI He, LIN Zhijun. Research on spatial distribution pattern of coal spontaneous combustion hazardous zone under condition of regenerated roof [J]. China Safety Science Journal, 2024, 34(3): 129-136. |
[4] | WU Fanghua, SHI Shiliang, LU Yi, GU Wangxin, TAN Jiale, LIU Weiting. Fire prevention and extinguishing performance of phosphogypsum based self-produced gas expansion slurry [J]. China Safety Science Journal, 2024, 34(3): 148-154. |
[5] | WANG Yongjun, ZHENG Qian, ZHANG Hemeng, DONG Wei, ZHANG Xiaoming, SASAKI Kyuro. Correlation analysis between combustion of underground residual coal and surface carbon flux in goaf [J]. China Safety Science Journal, 2024, 34(2): 161-167. |
[6] | ZHANG Yutao, GUO Qiang, ZHANG Yuanbo, LI Yaqing, SUN Yali. Correlation analysis and prediction of coal spontaneous combustion risk based on correlation coefficient method [J]. China Safety Science Journal, 2024, 34(1): 125-132. |
[7] | DONG Jianjun, ZHANG Ying, LI Xin, MEI Yuan. InSAR deformation monitoring and safety and stability evaluation on surface of coal mine goaf [J]. China Safety Science Journal, 2024, 34(1): 140-149. |
[8] | LI Delong, CHENG Yu, LI Youdong. Prediction model for demand for subway security inspectors under public health emergencies [J]. China Safety Science Journal, 2023, 33(S1): 228-234. |
[9] | WANG Wei, CUI Xinchao, QI Yun, LIANG Ran, JIA Baoshan, XUE Kailong. Regression analysis model of coal spontaneous combustion temperature in goaf based on SSA-RF [J]. China Safety Science Journal, 2023, 33(9): 136-141. |
[10] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[11] | GU Yingkui, WANG Yuanjin, SHI Changwu. Remaining useful life prediction method of rolling bearing based on EWM and SVR [J]. China Safety Science Journal, 2023, 33(9): 49-55. |
[12] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[13] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[14] | LI Shuai, LIAN Zhanghua, DING Lingling, LIAO Tao. Prediction model of sustained annular pressure of gas wells under multi-factor coupling effect [J]. China Safety Science Journal, 2023, 33(2): 166-172. |
[15] | KE Lihua, MENG Yaoyao, YAO Nan, WANG Qihu, TANG Huaqian. Evaluation of goaf stability based on fuzzy statistical method [J]. China Safety Science Journal, 2023, 33(2): 59-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||