| [1] |
WANG Peng, CAO Shuchao, YAO Ming. Fundamental diagrams for pedestrian traffic flow in controlled experiments[J]. Physica A: Statistical Mechanics and its Applications, 2019, 525:266-277.
doi: 10.1016/j.physa.2019.03.057
|
| [2] |
ZHANG Jun, KLINGSCH W, SCHADSCHNEIDER A, et al. Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions[J]. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011(6):DOI: 10.1088/1742-5468/2011/06/P06004.
|
| [3] |
LIAN Liping, MAI Xu, SONG Weiguo, et al. An experimental study on four-directional intersecting pedestrian flows[J]. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015(8):DOI: 10.1088/1742-5468/2015/08/P08024.
|
| [4] |
CAO Shuchao, SEYFRIED A, ZHANG Jun, et al. Fundamental diagrams for multidirectional pedestrian flows[J]. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017(3):DOI: 10.1088/1742-5468/aa620d.
|
| [5] |
霍非舟, 范丹丹, 刘昶, 等. 考虑结伴行为与情绪感染的人员疏散模型[J]. 中国安全科学学报, 2023, 33(11):126-132.
doi: 10.16265/j.cnki.issn1003-3033.2023.11.2286
|
|
HUO Feizhou, FAN Dandan, LIU Chang, et al. Study on evacuation model considering companion behavior and emotion contagion[J]. China Safety Science Journal, 2023, 33(11):126-132.
doi: 10.16265/j.cnki.issn1003-3033.2023.11.2286
|
| [6] |
邓社军, 虞宇浩, 张俊林, 等. 基于行人恐慌情绪解析的改进社会力模型[J]. 中国安全科学学报, 2024, 34(2):45-52.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.1277
|
|
DENG Shejun, YU Yuhao, ZHANG Junlin, et al. Cellular automata model for emergency evacuation considering panic factor[J]. China Safety Science Journal, 2024, 34(2):45-52.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.1277
|
| [7] |
XU Qiancheng, CHRAIBI M, TORDEUX A, et al. Generalized collision-free velocity model for pedestrian dynamics[J]. Physica A: Statistical Mechanics and its Applications, 2019,535: DOI: 10.1016/j.physa.2019.122521.
|
| [8] |
SONG Xiao, CHEN Kai, LI Xu, et al. Pedestrian trajectory prediction based on deep convolutional LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(6):3285-3302.
doi: 10.1109/TITS.2020.2981118
|
| [9] |
YANG Xin, FAN Jiangfeng, XING Siyuan. IST-PTEPN: an improved pedestrian trajectory and endpoint prediction network based on spatio-temporal information[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(12):4193-4206.
doi: 10.1007/s13042-023-01889-4
|
| [10] |
EIFFERT S, LI Kunming, SHAN Mao, et al. Probabilistic crowd GAN: multimodal pedestrian trajectory prediction using a graph vehicle-pedestrian attention network[J]. IEEE Robotics and Automation Letters, 2020, 5(4):5026-5033.
doi: 10.1109/LSP.2016.
|
| [11] |
XUE Hao, HUYNH D Q, REYNOLDS M. SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction[C]. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 2018: 1186-1194.
|
| [12] |
王瑞平, 宋晓, 陈凯, 等. 基于行人姿态的轨迹预测方法[J]. 北京航空航天大学学报, 2023, 49(7):1743-1754.
|
|
WANG Ruiping, SONG Xiao, CHEN Kai, et al. A trajectory prediction method based on pedestrian attitude[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7):1743-1754.
|
| [13] |
CUI Geng, YANAGISAWA D, NISHINARI K. Learning from experimental data to simulate pedestrian dynamics[J]. Physica A: Statistical Mechanics and its Applications, 2023,623: DOI: 10.1016/j.physa.2023.128837.
|