China Safety Science Journal ›› 2025, Vol. 35 ›› Issue (S1): 217-226.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0033
• Original article • Previous Articles Next Articles
ZHANG Zhengyue1(), CAO Jiantao2, QI Yun3
Received:
2025-01-18
Revised:
2025-03-21
Online:
2025-06-30
Published:
2025-12-30
CLC Number:
ZHANG Zhengyue, CAO Jiantao, QI Yun. Study on electricity theft detection considering extremely imbalanced classification in federated learning[J]. China Safety Science Journal, 2025, 35(S1): 217-226.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2025.S1.0033
Table 2
Feature extraction
算法2:特征提取 |
---|
输入:售电商的本地能源消耗数据X ∈ RT ×D |
输出:提取的特征向量 |
1 对本地能源消耗数据进行加密: Xenc ← CKKS.Encrypt(X) |
2 使用同态卷积对加密数据应用CNN层: |
3 Henc ← Conv(Xenc, Wenc, benc) |
4 对加密特征图应用池化操作: |
5 Penc ← Pool(Henc) |
6 初始化隐藏状态 |
7 for t ← 1 to T″ do |
8 对加密特征图应用LSTM层: |
9 |
10 返回: |
Table 3
HeteroFL performance evaluation
售电商 | 轮次 | r=0.01 | r=0.05 | r=0.1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fβ | BA | MCC | Loss | Fβ | BA | MCC | Loss | Fβ | BA | MCC | Loss | ||
2 | 3 5 8 10 15 | 54.24 68.21 65.99 67.69 67.28 | 59.14 66.87 69.58 70.80 71.94 | 18.37 33.77 39.37 41.76 44.28 | 0.79 0.65 0.61 0.59 0.56 | 69.37 68.45 70.21 71.27 70.51 | 71.82 72.80 73.65 74.28 74.23 | 43.75 45.94 47.55 48.75 48.77 | 0.57 0.56 0.54 0.53 0.53 | 71.37 71.76 73.14 72.64 73.64 | 75.46 75.63 75.14 75.99 75.88 | 51.29 51.58 50.38 52.23 51.98 | 0.51 0.51 0.52 0.50 0.51 |
5 | 3 5 8 10 15 | 74.57 73.92 76.18 76.60 76.77 | 77.55 77.85 77.61 77.76 78.94 | 55.31 56.17 55.35 55.58 58.08 | 0.47 0.46 0.49 0.46 0.44 | 78.59 80.27 81.68 81.16 82.43 | 80.12 80.94 82.39 81.62 82.03 | 60.32 61.90 64.79 63.28 64.07 | 0.41 0.39 0.36 0.37 0.37 | 50.72 67.99 58.31 6552 67.64 | 59.9 63.6 68.53 69.93 71.15 | 20.88 28.05 38.48 40.21 42.56 | 0.77 0.67 0.62 0.59 0.58 |
10 | 3 5 8 10 15 | 70.07 68.94 69.41 70.44 70.50 | 73.22 73.62 74.52 74.94 74.96 | 46.64 47.65 49.57 50.31 50.32 | 0.55 0.54 0.52 0.52 0.52 | 71.91 72.29 73.18 74.52 71.55 | 75.33 75.81 75.93 75.53 76.53 | 50.92 51.88 52.07 51.09 53.63 | 0.51 0.50 0.51 0.51 0.49 | 74.61 73.41 74.61 73.99 75.30 | 76.65 76.89 76.96 76.78 77.63 | 53.41 54.22 54.15 53.76 55.41 | 0.48 0.48 0.47 0.47 0.46 |
15 | 3 5 8 10 15 | 75.16 75.00 75.12 77.31 75.99 | 78.3 78.33 76.49 75.93 76.89 | 56.86 56.94 53.06 51.93 53.82 | 0.45 0.44 0.48 0.49 0.46 | 50.45 68.09 66.13 65.92 68.05 | 63.61 69.54 71.32 72.00 72.52 | 28.17 39.12 43.11 44.63 45.41 | 0.67 0.61 0.58 0.56 0.55 | 67.64 71.45 71.06 71.16 70.62 | 73.55 74.28 74.71 75.03 74.32 | 47.75 48.71 49.69 50.37 49.01 | 0.54 0.53 0.52 0.51 0.53 |
20 | 3 5 8 10 15 | 73.17 70.24 71.11 72.68 73.92 | 76.09 75.15 75.18 76.39 77.17 | 52.38 50.82 50.72 53.10 54.64 | 0.51 0.51 0.51 0.50 0.48 | 72.60 75.28 75.72 76.71 75.74 | 76.93 77.10 77.30 78.63 79.07 | 54.32 54.34 54.68 57.36 58.44 | 0.48 0.49 0.48 0.45 0.44 | 78.15 80.00 80.49 80.36 81.95 | 80.26 80.97 81.52 80.93 82.09 | 60.65 61.98 63.08 61.92 64.18 | 0.41 0.39 0.37 0.37 0.35 |
Table 4
Comparative analysis with other updated methods for classification imbalances (R=20, Rd=15)
方法 | r=0.01 | Loss | r=0.05 | Loss | r=0.1 | Loss | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fβ | BA | MCC | Fβ | BA | MCC | Fβ | BA | MCC | ||||
文中模型 | 73.92 | 77.17 | 54.64 | 0.48 | 75.74 | 79.07 | 58.44 | 0.44 | 81.95 | 82.09 | 64.18 | 0.35 |
Focal | 72.60 | 58.55 | 17.88 | 0.93 | 70.47 | 57.66 | 16.44 | 0.88 | 70.66 | 58.36 | 17.82 | 0.83 |
WCE | 69.50 | 59.67 | 20.27 | 0.69 | 68.67 | 59.02 | 18.97 | 0.69 | 69.52 | 57.93 | 16.81 | 0.70 |
GHMC | 72.68 | 76.39 | 53.10 | 0.50 | 76.71 | 78.63 | 57.36 | 0.45 | 80.36 | 80.93 | 61.92 | 0.37 |
LDAM | 56.12 | 53.48 | 7.29 | 1.05 | 55.22 | 53.18 | 6.63 | 1.52 | 55.81 | 52.72 | 5.76 | 1.66 |
Table 5
Comprehensive mean ablation comparison
方法 | r=0.01 | Loss | r=0.005 | Loss | r=0.1 | Loss | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fβ | BA | MCC | Fβ | BA | MCC | Fβ | BA | MCC | ||||
文中模型 | 71.62 | 74.60 | 49.47 | 0.52 | 72.48 | 75.64 | 51.53 | 0.50 | 71.90 | 74.95 | 50.24 | 0.51 |
No Attp | 67.60 | 68.12 | 36.45 | 0.92 | 65.91 | 67.48 | 35.20 | 0.96 | 66.30 | 67.73 | 35.77 | 0.96 |
SM | 71.11 | 58.25 | 17.68 | 1.38 | 71.13 | 58.48 | 18.15 | 1.27 | 70.97 | 58.44 | 18.04 | 1.32 |
[1] |
吴若冰, 路辉, 朱昱坤, 等. 基于多时间尺度深度学习的窃电用户检测方法研究[J]. 电测与仪表, 2024, 61(12): 178-184.
|
|
|
[2] |
祁云, 薛凯隆, 李绪萍, 等. 多策略改进SSA优化KELM的边坡稳定性预测模型[J]. 中国安全科学学报, 2025, 35(3):92-98.
|
|
|
[3] |
|
[4] |
|
[5] |
林振智, 崔雪原, 金伟超, 等. 用户侧窃电检测关键技术[J]. 电力系统自动化, 2022, 46(5): 188-199.
|
|
|
[6] |
|
[7] |
金晟, 苏盛, 薛阳, 等. 数据驱动窃电检测方法综述与低误报率研究展望[J]. 电力系统自动化, 2022, 46(1): 3-14.
|
|
|
[8] |
|
[9] |
|
[10] |
李亚红, 李一婧, 杨小东, 等. 基于同态加密和群签名的可验证联邦学习方案[J]. 电子与信息学报, 2025, 47: 1-11.
|
|
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[1] | LI Gang, ZHI Menghui, LI Bin, YANG Fan, PENG Zhiwei, LI Dongliang. Study on deep learning prediction model of surface subsidence depth based on InSAR monitoring data [J]. China Safety Science Journal, 2025, 35(S1): 107-113. |
[2] | MA Pengfei, GAO Yu, LI Honggang. Motion stability analysis and trajectory planning of intelligent robotic arm [J]. China Safety Science Journal, 2025, 35(S1): 137-143. |
[3] | LI Bin, ZOU Yang, PENG Zhiwei, WU Wenlin, LIU Jianing. Study on 3D modeling of airborne LiDAR data acquisition on mine slope [J]. China Safety Science Journal, 2025, 35(S1): 192-198. |
[4] | ZHANG Shunfeng, LAN Tianwei, ZHANG Yueheng, ZHAI Zhenrong, GUO Weiqiang, ZHANG Qi. Measurement of geostress and analysis of influencing factors in Maiduoshan Coal Mine [J]. China Safety Science Journal, 2025, 35(S1): 86-92. |
[5] | WU Hao, DONG Kai, WANG Chenghu, YOU Yang. Safety risk analysis of bridge jacking renovation construction based on DBN [J]. China Safety Science Journal, 2025, 35(S1): 93-96. |
[6] | CAO Weiping, XIAO Hannan, LUO Longping, LYU Pin, ZHAO Ming. On bracing mechanism and stability of two-row inclined-vertical retaining piles [J]. China Safety Science Journal, 2025, 35(6): 60-69. |
[7] | WANG Jingchun, TIAN Siao. Intelligent generation of tunnel high ground temperature prevention and control measures based on cloud case-based reasoning [J]. China Safety Science Journal, 2025, 35(5): 47-55. |
[8] | CHEN Dawei, YANG Zhe, YU Rui, CAO Weiqiang. Empirical analysis of construction engineering safety impact network influenced by five-party responsible entities [J]. China Safety Science Journal, 2025, 35(4): 1-8. |
[9] | LIU Yadong, LIU Xian, HU Hesong, CHEN Hang, QIAO Shengfang. Analysis of feature importance to retaining wall deformation of excavation using interpretable machine learning model [J]. China Safety Science Journal, 2025, 35(4): 110-119. |
[10] | LI Yanjun, XIA Huahua, YAN Hongshuai, LIU Kewei, SONG Ruitao. Safety evaluation of metro station construction in confined space under 500 kV high-voltage lines [J]. China Safety Science Journal, 2025, 35(4): 204-210. |
[11] | JIANG Xin, LI Fengbiao, PENG Jiayu, JIAN Li, JIN Lianghai. Mechanism of risk perception on safety cognition of construction workers in underground caverns [J]. China Safety Science Journal, 2025, 35(3): 1-9. |
[12] | LIU Qingfeng, HU Changming, ZHAO Jiangping. Clustering and correlation analysis of factors causing cross operation accidents in construction [J]. China Safety Science Journal, 2025, 35(3): 142-150. |
[13] | YANG Su, YAO Wenbao, WANG Ting, CHENG Baoquan, ZHU Suyuan. Research on influence of safety motivation on construction workers' safety behavior based on AMO-SDT [J]. China Safety Science Journal, 2025, 35(3): 19-27. |
[14] | LEI Tian, TIAN Zhen. Quantitative classification and evolution analysis of construction safety climate [J]. China Safety Science Journal, 2025, 35(1): 32-39. |
[15] | GUO Yanhui, MA Rui, MAO Shilin, QIAN Yong, DING Mingzhong, SONG Qin. Effects of excavation support of deep and large foundation pit on gravel stratum on adjacent existing road [J]. China Safety Science Journal, 2025, 35(1): 94-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||