[1] 耿宏,李萍萍. QAR数据处理在气动力矩参数辨识中的应用[J]. 航空电子技术,2012,43(3): 25-29. GENG Hong, LI Pingping. Application of QAR data processing in aerodynamic moment parameter identification [J].Avionics Technology, 2012, 43(3): 25-29. [2] 葛飞,李娜,魏志强.针对高原机场障碍物补偿修正量的改进[J].中国安全科学学报,2019,29(4): 183-188. GE Fei, LI Na, WEI Zhiqiang. Improvement on compensation and correction amount of obstacles at plateau airports[J]. China Safety Science Journal, 2019,29(4): 183-188. [3] 孙瑞山,杨泽煊,汪磊.QAR数据在飞行安全评价中的应用[J].中国安全科学学报,2015,25(7): 87-92. SUN Ruishan, YANG Zexuan, WANG Lei. Study of flight safety evaluation based on QAR data[J]. China Safety Science Journal, 2015,25(7): 87-92. [4] 王剑辉,邓伟,夏正洪,等.运输航空飞行安全风险评价方法[J].中国安全科学学报,2019,29(12): 110-116. WANG Jianhui, DENG Wei, XIA Zhenghong, et al. Flight risk assessment method of transport aviation[J]. China Safety Science Journal,2019,29(12): 110-116. [5] 吴奇,储银雪.基于深度学习的航空器异常飞行状态识别[J].民用飞机设计与研究,2017(3):68-78,4. WU Qi, CHU Yinxue. Abnormal flight status of aircraft identification based on deep learning[J]. Civil Aircraft Design & Research, 2017(3):68-78,4. [6] ZHANG Xiaoyu, CHEN Jiusheng, GAN Quan. Anomaly detection for aviation safety based on an improved KPCA algorithm[J]. Journal of Electrical and Computer Engineering, 2017, 2017: 1-8. [7] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1 527-1 554. [8] 张军阳,王慧丽,郭阳,等.深度学习相关研究综述[J].计算机应用研究,2018,35(7): 1 921-1 928,1 936. ZHANG Junyang, WANG Huili, GUO Yang, et al. Review of deep learning[J]. Application Research of Computers, 2018,35(7):1 921- 1 928,1 936. [9] JIA Feng, LEI Yaguo, LIN Jing, et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems & Signal Processing, 2016, 72/73: 303-315. [10] ZHANG Qingchen, YANG L T, CHEN Zhikui. Deep computation model for unsupervised feature learning on big data[J]. IEEE Transactions on Services Computing, 2016, 9(1): 161-171. [11] TONG Chao, YIN Xiang, WANG Shili, et al. A novel deep learning method for aircraft landing speed prediction based on cloud-based sensor data[J]. Future Generation Computer Systems, 2018, 88: 552-558. [12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1 735-1 780. [13] UZUN M, DEMIREZEN M U, KOYUNCU E, et al. Design of a hybrid digital-twin flight performance model through machine learning[C]. 2019 IEEE Aerospace Conference, 2019: 1-14. [14] 张鹏,杨涛,刘亚楠,等.基于CNN-LSTM的QAR数据特征提取与预测[J].计算机应用研究,2019,36(10): 2 958-2 961. ZHANG Peng, YANG Tao, LIU Yanan, et al. Feature extraction and prediction of QAR data based on CNN-LSTM[J]. Application Research of Computers, 2019,36(10): 2 958-2 961. [15] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998, 86(11): 2 278-2 324. [16] 张鹏,杨涛,刘亚楠.基于深度学习的伺服系统状态预测算法[J].计算机应用与软件,2019,36(3): 236-242. ZHANG Peng, YANG Tao, LIU Ya′nan, State prediction algorithm of servo system based on deep learning[J]. Computer Applications and Software, 2019,36(3): 236-242. [17] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL].(2018-06-12).https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. 31stAnnual Conference on Neural Information Processing Systems, 2017: 5 999-6 009. [19] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. [2020-07-26]. https://arxiv.org/abs/1409.0473. [20] BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL].[2020-07-26]. https://arxiv.org/abs/1607.06450. [21] 张鹏. 自动飞行控制系统[M]. 北京:中国民航出版社, 2016: 218-234. [22] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2020-07-26].https://arxiv.org/abs/1412.6980. |