[1] 陈一洲,张无敌,晏风,等.暴恐事件下机场航站楼疏散能力研究[J].中国安全科学学报, 2020, 30(2): 86-92. CHEN Yizhou, ZHANG Wudi, YAN Feng, et al. Study on evacuation ability of airport terminals to violent terrorist attacks[J]. China Safety Science Journal, 2020, 30(2): 86-92. [2] 中国民用航空局公安局. 2019年民用航空安全保卫事件信息统计报告[R], 2020. [3] KLEIMAN A. When brute force fails: how to have less crime and less punishment[M]. Princeton: Princeton University Press, 2009: 145-146. [4] CAPLAN J, KENNEDY L, PIZA E. Joint utility of event-dependent and environmental crime analysis techniques for violent crime forecasting[J]. Crime and Delinquency, 2013, 59(2): 243-270. [5] HAYWARD K. City limits: crime, consumer culture, and the urban experience[M]. London: Glass House, 2004: 33-34. [6] CHURCHILL D. History, periodization and the character of contemporary crime control[J]. Criminology and Criminal Justice, 2018, 19(4): 475-492. [7] YAN X, RAZEGHI-JAHROMI M, HOMAIFAR A, et al. A novel streaming data clustering algorithm based on fitness proportionate sharing[J]. IEEE Access, 2019, 4: 88-99. [8] YAN X, HOMAIFAR A, AWOGBAMI G, et al. Unsupervised feature selection through fitness proportionate sharing clustering[C]. 2018 IEEE International Conference on Systems, Man, and Cybernetics, 2018: 348-357. [9] TAYLOR B. The integration of crime analysis into law enforcement agencies[J]. Police Quarterly, 2017, 10(2):154-169. [10] 王岩韬,陈冠铭.基于时间序列模型的航班运行风险短期预测[J].中国安全科学学报, 2020, 30(5): 33-38. WANG Yantao, CHEN Guanming. Short-time prediction of flight operation risk based on time series models[J].China Safety Science Journal, 2020, 30(5): 33-38. [11] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Boston: MIT Press, 2016: 111-112. [12] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. [13] 温廷新,王贵通,孔祥博,等.基于迁移学习与残差网络的矿工不安全行为识别[J].中国安全科学学报, 2020, 30(3): 41-46. WEN Tingxin, WANG Guitong, KONG Xiangbo, et al. Identification of miners' unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Journal, 2020, 30(3): 41-46. |