[1] |
YANG Meng, WU Chengke, GUO Yuanjun, et al. Transformer-based deep learning model and video dataset for unsafe action identification in construction projects[J]. Automation in Construction, 2023, 146: DOI: 10.1016/j.autcon.2022.104703.
|
[2] |
佟瑞鹏, 张艳伟. 人工智能技术在矿工不安全行为识别中的融合应用[J]. 中国安全科学学报, 2019, 29(1):7-12.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.002
|
|
TONG Ruipeng, ZHANG Yanwei. Integration between artificial intelligence technologies for miners' unsafe behavior identification[J]. China Safety Science Journal, 2019, 29(1): 7-12.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.002
|
[3] |
赵荣泳, 韦炳宇, 朱文杰, 等. 公共场所行人异常行为识别方法综述[J]. 中国安全科学学报, 2024, 34(2):83-93.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.1125
|
|
ZHAO Rongyong, WEI Bingyu, ZHU Wenjie, et al. Overview of recognition methods of pedestrian abnormal behaviors in public places[J]. China Safety Science Journal, 2024, 34(2): 83-93.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.1125
|
[4] |
REDMON J, DIVVALA S, GIRSSHICK R, et al. You only look once: unified, real-time object detection[C]. Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016:779-788.
|
[5] |
LI Lijuan, ZHANG Peng, YANG Shipin, et al. YOLOv5-SFE: an algorithm fusing spatio-temporal features for detecting and recognizing workers' operating behaviors[J]. Advanced Engineering Informatics, 2023, 56: DOI: 10.1016/j.aei.2023.101988.
|
[6] |
FU Yuanyuan, RAN Teng, XIAO Wendong, et al. GD-YOLO: an improved convolutional neural network architecture for real-time detection of smoking and phone use behaviors[J]. Digital Signal Processing, 2024, 151: DOI: 10.1016/j.dsp.2024.104554.
|
[7] |
XIN Fangfang, HE Xinyu, YAO Caoxiu, et al. A real-time detection for miner behavior via DYS-YOLOv8n model[J]. Journal of Real-Time Image Processing, 2024, 21: DOI: 10.1007/s11554-024-01466-0.
|
[8] |
罗国富, 王源, 李浩, 等. 基于改进YOLOv5s的智能车间工人不安全行为实时检测方法[J]. 计算机集成制造系统, 2024, 30(5):1610-1619.
|
|
LUO Guofu, WANG Yuan, LI Hao, et al. Unsafe behavior real-time detection method of intelligent workshop workers based on improved YOLOv5s[J]. Computer Integrated Manufacturing Systems, 2024, 30(5): 1610-1619.
|
[9] |
韩康, 李敬兆, 陶荣颖. 基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别[J]. 工矿自动化, 2024, 50(3):82-91.
|
|
HAN Kang, LI Jingzhao, TAO Rongying. Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack[J]. Journal of Mine Automation, 2024, 50(3): 82-91.
|
[10] |
徐浩钧, 胡啸峰, 吴建松. 化学实验室动火实验无人值守行为识别方法研究[J]. 中国安全生产科学技术, 2023, 19(12):135-141.
|
|
XU Haojun, HU Xiaofeng, WU Jiansong. Research on identification method of unattended behavior in hot experiments of chemical laboratory[J]. Journal of Safety Science and Technology, 2023, 19(12): 135-141.
|
[11] |
YU Weihao, SI Chenyang, ZHOU Pan, et al. MetaFormer baselines for vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(2): 896-912.
|
[12] |
FENG Yifan, HUANG Jiangang, DU Shaoyi, et al. Hyper-YOLO: when visual object detection meets hypergraph computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2025, 47(4): 2 388-2 401.
|
[13] |
SUN Hang, WEN Yang, FENG Huijing, et al. Unsupervised bidirectional contrastive reconstruction and adaptive fine-grained channel attention networks for image dehazing[J]. Neural Networks, 2024, 176: DOI: 10.1016/j.neunet.2024.106314.
|
[14] |
GRAHAM A. Kronecker products and matrix calculus with applications[M]. Horwood: Halsted Press, 1981: 21-35.
|
[15] |
WITTEN I H, FRANK E, HALL M A, et al. Data mining: practical machine learning tools and techniques[M]. Burlington: Morgan Kaufmann, 2016: 181-186.
|