[1] |
王启睿, 姜学鹏, 薛光桥, 等. 我国公路隧道火灾社会风险可接受标准研究[J]. 中国安全科学学报, 2024, 34(4): 121-127.
doi: 10.16265/j.cnki.issn1003-3033.2024.04.0687
|
|
WANG Qirui, JIANG Xuepeng, XUE Guangqiao, et al. Study on social risk acceptance criteria of road tunnel fire in China[J]. China Safety Science Journal, 2024, 34(4): 121-127.
doi: 10.16265/j.cnki.issn1003-3033.2024.04.0687
|
[2] |
高子鹤. 隧道内受限火羽流行为特征及竖井自然排烟机理研究[D]. 合肥: 中国科学技术大学, 2016.
|
|
GAO Zihe. Studies on characteristics of confined fire plumes and mechanism of natural smoke exhaust by shaft[D]. Hefei: University of Science and Technology of China, 2016.
|
[3] |
JI Jie, GUO Fangyi, GAO Zihe, et al. Numerical investigation on the effect of ambient pressure on smoke movement and temperature distribution in tunnel fires[J]. Applied Thermal Engineering, 2017, 118: 663-669.
|
[4] |
YAN Zhiguo, GUO Qinghua, ZHU Hehua. Full-scale experiments on fire characteristics of road tunnel at high altitude[J]. Tunnelling and Underground Space Technology, 2017, 66: 134-146.
|
[5] |
张念, 谭忠盛. 高海拔特长铁路隧道火灾烟气分布特性数值模拟研究[J]. 中国安全科学学报, 2013, 23(6): 52-57.
|
|
ZHANG Nian, TAN Zhongsheng. Numerical simulation study on smoke distribution of fire in high-altitude super-long railway tunnels[J]. China Safety Science Journal, 2013, 23(6): 52-57.
|
[6] |
张念, 谭忠盛, 毛军, 等. 高海拔铁路隧道火灾燃烧特性试验研究[J]. 中国安全科学学报, 2011, 21(12): 52-57.
|
|
ZHANG Nian, TAN Zhongsheng, MAO Jun, et al. Experimental study on combustion characteristics of fire in high-altitude railway tunnels[J]. China Safety Science Journal, 2011, 21(12): 52-57.
|
[7] |
纪慧琢. 高海拔特长隧道火灾烟气流动特性的数值模拟分析[D]. 北京: 北京交通大学, 2010.
|
|
JI Huizhuo. The simulation and analysis of fire smoke of extra long tunnel in high altitude region[D]. Beijing: Beijing Jiaotong University, 2010.
|
[8] |
田源. 高海拔隧道火灾烟气及温度场数值模拟研究[J]. 消防科学与技术, 2021, 40(2): 201-203.
|
|
TIAN Yuan. Numerical simulation of fire smoke and temperature field in high altitude tunnel[J]. Fire Science and Technology, 2021, 40(2): 201-203.
|
[9] |
杜涛, 李萍, 王雨, 等. 隧道火灾烟气温度及蔓延速度衰减特性[J]. 中国安全科学学报, 2023, 33(2): 140-145.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0399
|
|
DU Tao, LI Ping, WANG Yu, et al. Longitudinal decay of smoke temperature and front velocity in tunnel fires[J]. China Safety Science Journal, 2023, 33(2): 140-145.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0399
|
[10] |
XUE Dapeng, ZHENG Guoping, GUO Hongyu, et al. Study on the reasonable tilt angle of ventilation shafts in Xidianwan tunnel, China[J]. IOP Conference Series: Earth and Environmental Science, 2020, 601: DOI: 10.1088/1755-1315 /601/1/012003.
|
[11] |
YAO Yongzheng, ZHANG Shaogang, SHI Long, et al. Effects of shaft inclination angle on the capacity of smoke exhaust under tunnel fire[J]. Indoor and Built Environment, 2019, 28(1): 77-87.
doi: 10.1177/1420326X17734906
|
[12] |
樊勇杰. 低压环境下竖井自然排烟隧道火灾烟气特性研究[D]. 武汉: 武汉科技大学, 2022.
|
|
FAN Yongjie. Study on the fire smoke characteristics of the natural smoke extraction tunnel with vertical shaft at reduced ambient pressure[D]. Wuhan: Wuhan University of Science and Technology, 2022.
|
[13] |
梁建兴. 排烟井倾角对竖井隧道火灾烟气热分层和运动影响研究[D]. 绵阳: 西南科技大学, 2023.
|
|
LIANG Jianxing. Study of the effect of smoke shaft inclination on the thermal stratification and movement of smoke from shaft tunnel fire[D]. Mianyang: Southwest University of Science and Technology, 2023.
|
[14] |
黄天荣, 张银屏, 宋飞. 自然通风隧道不同竖井结构形式火灾试验研究[J]. 消防科学与技术, 2020, 39(10): 1376-1379.
|
|
HUANG Tianrong, ZHANG Yinping, SONG Fei. Fire tests of different shaft structures in natural ventilation tunnel[J]. Fire Science and Technology, 2020, 39(10): 1376-1379.
|
[15] |
YAN Guanfeng, WANG Mingnian, YU Li, et al. Effects of ambient pressure on smoke movement patterns in vertical shafts in tunnel fires with natural ventilation systems[J]. Building Simulation, 2020, 13(4): 931-941.
|
[16] |
JTG/T D70/2-02-2014,公路隧道通风设计细则[S].
|
|
JTG/T D70/2-02-2014,Guidelines for design of ventilation of highway tunnels[S].
|
[17] |
MCGRATTAN K B, MCDERMOTT R J, WEINSCHENK C G, et al. Fire dynamics simulator: technical reference guide: sixth edition:1018[R]. Gaithersburg: National Institute of Standards and Technology, 2024.
|
[18] |
CONG Haiyong, WANG Xinshi, ZHU Pei, et al. Improvement in smoke extraction efficiency by natural ventilation through a board-coupled shaft during tunnel fires[J]. Applied Thermal Engineering, 2017, 118: 127-137.
|
[19] |
COOPER L Y, HARKLEROAD M, QUINTIERE J, et al. An experimental study of upper hot layer stratification in full-scale multiroom fire scenarios[J]. Journal of Heat and Mass Transfer, 1982, 104(4): 741-749.
|
[20] |
JI Jie, GAO Zihe, FAN Chuangang, et al. A study of the effect of plug-holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6032-6041.
|
[21] |
霍然, 胡源, 李元洲. 建筑火灾安全工程导论[M]. 合肥: 中国科学技术大学出版社, 2009: 98-99.
|
|
HUO Ran, HU Yuan, LI Yuanzhou. Introduction to building fire safety engineering[M]. Hefei: University of Science and Technology of China Press, 2009: 98-99.
|
[22] |
张靖岩, 李元洲, 霍然, 等. 竖井中羽流前锋上升时间的实验研究[J]. 安全与环境学报, 2006, 6(2): 111-114.
|
|
ZHANG Jingyan, LI Yuanzhou, HUO Ran, et al. Experimental study on the rising-time of fire plume fronts in the vertical shaft[J]. Journal of Safety and Environment, 2003, 6(2): 111-114.
|
[23] |
刘紫玮, 唐飞, 胡隆华, 等. 不同低气压环境下走廊火灾顶棚射流温度分布特征研究[J]. 工程热物理学报, 2024, 45(7): 2166-2174.
|
|
LIU Ziwei, TANG Fei, HU Longhua, et al. Temperature profile characteristics of ceiling jet in corridor fires under various sub-atmospheric pressures[J]. Journal of Engineering Thermophysics, 2024, 45(7): 2166-2174.
|
[24] |
WANG Zhan, DENG Wenhui, ZHOU Min, et al. Evaluation of fire smoke and heat exhaust performance of shafts by natural venting in tunnels[J]. Tunnelling and Underground Space Technology, 2023, 131: DOI: 10.1016/J.TUST.2022.104817.
|