中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (9): 193-201.doi: 10.16265/j.cnki.issn1003-3033.2025.09.1527

• 安全工程技术 • 上一篇    下一篇

既有民用建筑安全鉴定辅助决策模型及应用

戴梦璠1(), 李灵芝1,**(), 钱宇昕2, 袁竞峰3, 韩晓健1, 赵昌皓1   

  1. 1 南京工业大学 土木工程学院,江苏南京 211816
    2 南京工业大学计算机与信息工程学院(人工智能学院),江苏 南京 211816
    3 东南大学 土木工程学院,江苏 南京 211189
  • 收稿日期:2025-04-08 修回日期:2025-06-30 出版日期:2025-09-28
  • 通信作者:
    **李灵芝(1987—),女,山东滨州人,博士,副教授,主要从事建筑安全评估、建筑运维管理、数据挖掘等方面的研究。E-mail:
  • 作者简介:

    戴梦璠 (2000—),女,江苏徐州人,硕士研究生,主要研究方向为数据挖掘、既有建筑安全评估、城市更新。E-mail:

    袁竞峰 教授

    韩晓健 教授

  • 基金资助:
    国家社会科学基金资助(24BGL297)

Decision-support model for safety evaluation of existing civil buildings and its application

DAI Mengfan1(), LI Lingzhi1,**(), QIAN Yuxin2, YUAN Jingfeng3, HAN Xiaojian1, ZHAO Changhao1   

  1. 1 College of Civil Engineering, Nanjing Tech University, Nanjing Jiangsu 211816, China
    2 School of Computer Science and Technology (School of Artificial Intelligence), Nanjing Tech University, Nanjing Jiangsu 211816, China
    3 School of Civil Engineering, Southeast University, Nanjing Jiangsu 211189, China
  • Received:2025-04-08 Revised:2025-06-30 Published:2025-09-28

摘要:

为提升建筑安全体检工作效率,基于机器学习(ML)算法,构建既有民用建筑安全鉴定辅助决策模型。首先,从房屋鉴定报告中收集建筑结构安全特征数据;其次,采用相关性分析和交叉验证递归特征消除法构建包含“设计-演变-状态”多维特征的建筑安全鉴定辅助决策指标体系;再次,构建5种ML模型,根据准确率、精确率、召回率等指标测试模型性能;最后,开发既有民用建筑安全鉴定辅助决策平台,以实际工程验证其可操作性。结果表明:相较于设计特征,演变和状态特征更能反映民用建筑的实际安全状况,其中,建筑年龄、有无改扩建和混凝土梁承载能力是关键特征;决策树在围护系统、上部承重结构、地基基础及鉴定单元安全性评估中表现最佳。

关键词: 机器学习(ML), 既有民用建筑, 安全鉴定, 辅助决策模型, 指标体系

Abstract:

To improve the efficiency of safety inspections for existing civil buildings, this study develops a decision-support model for safety evaluation of existing civil buildings based on ML techniques. Building safety feature data were first collected from building evaluation reports. Then, a multi-dimensional indicator system integrating "design-evolution-status" features was established through correlation analysis and recursive feature elimination with cross-validation. Subsequently, five ML models were built and evaluated using performance metrics such as accuracy, precision, and recall. Furthermore, a decision-support platform for safety evaluation of existing civil buildings was developed and validated through a real engineering project to examine its practical operability. The results demonstrate that, compared to design features, evolution and status features more effectively reflect the actual safety conditions of civil buildings. In particular, building age, renovation or extension history, and concrete beam load capacity are identified as key features. Among the tested models, the Decision Tree algorithm shows the best performance in evaluating the safety of enclosure system, superstructure, foundation, and individual evaluation unit.

Key words: machine learning (ML), existing civil buildings, safety evaluation, decision-support model, indicator system

中图分类号: