中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (9): 1-7.doi: 10.16265/j.cnki.issn1003-3033.2025.09.1418

• 安全科学理论与安全系统科学 •    下一篇

基于IPSO-BP的消防通信指挥系统效能评价

于振江()   

  1. 中国人民大学 党委保卫部(处),北京 100872
  • 收稿日期:2025-05-03 修回日期:2025-07-10 出版日期:2025-09-28
  • 作者简介:

    于振江,工程师,(1988—),男,河北张家口人,硕士,工程师,主要从事消防管理与技术方面的研究。E-mail:

  • 基金资助:
    北京市高等教育学会研究项目(2025K20002)

Efficacy evaluation of fire communication command system based on IPSO-BP

YU Zhenjiang()   

  1. Party Committee Security Department, Renmin University of China, Beijing 100872, China
  • Received:2025-05-03 Revised:2025-07-10 Published:2025-09-28

摘要:

为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过改进粒子群优化(IPSO)算法优化参数,提出基于IPSO-BP的系统效能评价方法;采用专家打分与层次分析法(AHP)结合的方式获取样本数据,经主成分分析(PCA)方法降维后,分别基于BP神经网络、PSO-BP神经网络、IPSO-BP神经网络这3个模型开展仿真对比。结果表明:IPSO-BP神经网络模型的收敛速度最快,其均方误差相比于BP神经网络模型降低了75.71%,相较于PSO-BP神经网络模型降低了45.96%,为三者中的最小值;IPSO-BP模型能够合理精准地评价支队级消防通信指挥系统效能,具有一定的普适性。

关键词: 消防通信指挥系统, 效能评价, 反向传播(BP)神经网络, 改进粒子群优化(IPSO), 指标体系

Abstract:

This study provides quantitative support for analyzing current fire communication command systems and enabling their iterative upgrades. A four-level efficacy evaluation index system for brigade-level fire command communication systems was constructed, based on fire communication command system design specifications. This system assessed three key dimensions: operational support capability, data service capability, and communication assurance capability. An IPSO-BP-based system efficacy evaluation method was proposed, building upon BP neural network algorithm. Parameters were optimized using IPSO algorithm. Sample data were acquired through a combination of expert scoring and the Analytic Hierarchy Process (AHP). Principal Component Analysis (PCA) was applied for dimensionality reduction. Simulation comparisons were conducted using three distinct models: BP neural network, PSO-BP neural network, and IPSO-BP neural network. Results demonstrate that IPSO-BP neural network model achieves the fastest convergence speed. Its mean square error decreases by 75.71% compared to BP neural network model and by 45.96% compared to PSO-BP neural network model, representing the lowest error value among the three models. Furthermore, IPSO-BP model reasonably and accurately evaluates brigade-level fire communication command system efficacy, demonstrating considerable generalizability.

Key words: fire communication command system, efficacy evaluation, back propagation (BP) neural network, improved particle swarm optimization (IPSO), index system

中图分类号: