[1] |
易斌. 基于ISM和AHP的城市消防安全评价分析[J]. 消防科学与技术, 2016, 35(3):423-425.
|
|
YI Bin. Analysis of urban fire safety evaluation based on ISM and AHP[J]. Fire Science and Technology, 2016, 35(3): 423-425.
|
[2] |
陈志芬, 黄靖玲, 李亚. 适应城市消防规划需求的火灾风险评估研究[J]. 中国安全生产科学技术, 2019, 15(5):185-191.
|
|
CHEN Zhifen, HUANG Jingling, LI Ya. Research on fire risk assessment adapted to urban fire planning needs[J]. Journal of Safety Science and Technology, 2019, 15(5): 185-191.
|
[3] |
肖国清, 黄仁和, 邹瑞, 等. 大型城市综合体火灾风险评估研究[J]. 中国安全生产科学技术, 2021, 17(8):137-142.
|
|
XIAO Guoqing, HUANG Renhe, ZOU Rui, et al. Fire risk assessment study of large urban complexes[J]. Journal of Safety Science and Technology, 2021, 17(8): 137-142.
|
[4] |
王梦瑶, 张靖岩, 杨玲, 等. 面向韧性城市的高层建筑消防安全韧性评估[J]. 建筑科学, 2020, 36(5):115-119.
|
|
WANG Mengyao, ZHANG Jingyan, YANG Ling, et al. Fire safety resilience assessment of high-rise buildings facing resilient citys[J]. Building Science, 2020, 36(5): 115-119.
|
[5] |
官钰希, 方正, 刘非. 层次分析法在古建筑群火灾风险评估中的应用:以湖北省古建筑群为例[J]. 消防科学与技术, 2015, 34(10):1387-1396.
|
|
GUAN Yuxi, FANG Zheng, LIU Fei. Application of hierarchical analysis method in fire risk assessment of ancient building complexes in Hubei province[J]. Fire Science and Technology, 2015, 34(10): 1387-1396.
|
[6] |
王爱, 张强, 陆林, 等. 多源数据支持下城市火灾风险评估及规划响应[J]. 中国安全科学学报, 2021, 31(3):148-155.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.021
|
|
WANG Ai, ZHANG Qiang, LU Lin, et al. Urban fire risk assessment and planning response based on multi-source data[J]. China Safety Science Journal, 2021, 31(3): 148-155.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.021
|
[7] |
LI Shiyu, TAO Gang, ZHANG Lijing. Fire risk assessment of high-rise buildings based on Gray-FAHP mathematical model[J]. Procedia Engineering, 2018, 211: 395-402.
doi: 10.1016/j.proeng.2017.12.028
|
[8] |
GB 55037—2022, 建筑防火通用规范[S].
|
|
GB 55037-2022, General code for fire protection of buildings and constructions[S].
|
[9] |
GB 51080—2015, 城市消防规划规范[S].
|
|
GB 51080-2015, Code for planning of urban fire control[S].
|
[10] |
WU Kaiya, JIN Juliang. Attribute recognition method of regional ecological security evaluation based on combined weight on principle of relative entropy[J]. Scientia Geographica Sinica, 2008, 28(6): 754-758.
doi: 10.13249/j.cnki.sgs.2008.06.754
|
[11] |
王新, 杨任农, 于洋. 基于TOPSIS的空战效能多指标评估模型[J]. 航空工程进展, 2020, 11(1):69-76.
|
|
WANG Xin, YANG Rennong, YU Yang. Multi-Indicator evaluation model of air combat effectiveness based on TOPSIS[J]. Aviation Engineering Progress, 2020, 11(1): 69-76.
|
[12] |
CUI Wenhua, YE Jun. Improved symmetry measures of simplified neutrosophic sets and their decision-making method based on a sine entropy weight model[J]. Symmetry, 2018, 10: DOI: 10.3390/sym10060225.
|
[13] |
程启月. 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010, 30(7):1225-1228.
doi: 10.12011/1000-6788(2010)7-1225
|
|
CHENG Qiyue. Structural entropy weighting method for determining the weights of evaluation indicators[J]. Systems Engineering-Theory & Practice, 2010, 30(7): 1225-1228.
|
[14] |
王晓翠, 张礼敬, 陶刚, 等. 基于TOPSIS法的桥梁火灾韧性评估模型[J]. 中国安全科学学报, 2018, 28(4):59-64.
doi: 10.16265/j.cnki.issn1003-3033.2018.04.011
|
|
WANG Xiaocui, ZHANG Liijng, TAO Gang, et al. Bridge fire resilience assessment model based on TOPSIS method[J]. China Safety Science Journal, 2018, 28(4): 59-64.
doi: 10.16265/j.cnki.issn1003-3033.2018.04.011
|