[1] |
LIU Xiaoxu, YAN Weiqi, KASABOV N. Vehicle-related scene segmentation using CapsNets[C]. 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), 2020: 1-6.
|
[2] |
LIU Xiaoxu, NEUYEN M, YAN Weiqi. Vehicle-related scene understanding using deep learning[C]. Asian Conference on Pattern Recognition, 2019: 61-73.
|
[3] |
RUBAIYAT A H, TOMA T T, KALANTARI-KHANDANI M, et al. Automatic detection of helmet uses for construction safety[C]. IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW), 2016: 135-142.
|
[4] |
WU Hao, ZHAO Jinsong. An intelligent vision-based approach for helmet identification for work safety[J]. Computers in Industry, 2018, 100: 267-277.
doi: 10.1016/j.compind.2018.03.037
|
[5] |
SILVA R R V, AIRES K R T, VERAS R D M S. Helmet detection on motorcyclists using image descriptors and classifiers[C]. 27th SIBGRAPI Conference on Graphics, Patterns and Images, 2014: 141-148.
|
[6] |
张建明, 王伟, 陆朝铨, 等. 基于压缩卷积神经网络的交通标志分类算法[J]. 华中科技大学学报:自然科学版, 2019, 47(1): 103-108.
|
|
ZHANG Jianming, WANG Wei, LU Chaoquan, et al. Traffic sign classification algorithm based on compressed convolutional neural network[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2019, 47(1): 103-108.
|
[7] |
WU Linxiu, LI Houjie, HE Jianjun, et al. Traffic sign detection method based on Faster R-CNN[J]. Journal of Physics: Conference Series, 2019, 1713(3): DOI: 10.1088/1742-6596/1176/3/032045.
|
[8] |
CHEHRI H, CHEHRI A, SAADANE R. Traffic signs detection and recognition system in snowy environment using deep learning[C]. The Proceedings of the Third International Conference on Smart City Applications, 2020: 503-513.
|
[9] |
WANG Canyong. Research and application of traffic sign detection and recognition based on deep learning[C]. International Conference on Robots & Intelligent System (ICRIS), 2018: 150-152.
|
[10] |
JIN Miao, CHEN Xiwen, LAI Guoshu, et al. Glove detection system based on VGG-16 network[C]. 13th International Symposium on Computational Intelligence and Design (ISCID), 2020: 172-175.
|
[11] |
汪洋, 王俊刚. 基于深度学习算法的铁路列车运行安全检测[J]. 中国安全科学学报, 2018, 28(增2): 41-45.
|
|
WANG Yang, WANG Jungang. Study on safety inspection of railway train operation based on deep learning algorithm[J]. China Safety Science Journal, 2018, 28(S2): 41-45.
doi: 10.16265/j.cnki.issn1003-3033.2018.S2.008
|
[12] |
ZHOU Yanqing, XUE Heru, JIANG Xinhua, et al. Low-resolution safety helmet image recognition combining local binary pattern with statistical features[J]. Comput Syst Appl, 2015, 24(7): 211-215.
|
[13] |
MNEYMNEH B E, ABBAS M, KHOURY H. Automated hardhat detection for construction safety applications[J]. Procedia engineering, 2017, 196: 895-902.
doi: 10.1016/j.proeng.2017.08.022
|
[14] |
PARK C, LEE D, KHAN N. An analysis on safety risk judgment patterns towards computer vision based construction safety management[C]. Creative Construction e-Conference, 2020: 31-38.
|
[15] |
HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]. International Joint Conference on Neural Networks, 2013:1-8.
|
[16] |
GREENHALGH J, MIRMEHDI M. Real-time detection and recognition of road traffic signs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1 498-1 506.
doi: 10.1109/TITS.2012.2208909
|
[17] |
KO J G, MUSALOIU-ELEFTERI R, LIM J H, et al. MEDiSN: medical emergency detection in sensor networks[J]. Acm Transactions on Embedded Computing Systems, 2008, 10(1): 11-29.
|
[18] |
梅莹, 尹艺璐, 石称华, 等. 基于改进 VGG 卷积神经网络的叶菜霜霉病智能识别算法研究[J]. 上海蔬菜, 2021(6): 76-84.
|
|
MEI Ying, YIN Yilu, SHI Chenghua, et al. Research on intelligent recognition algorithm of leafy vegetable downy mildew based on improved VGG convolutional neural network[J]. Shanghai Vegetables, 2021(6): 76-84.
|
[19] |
QIN Zhongbing, YAN Weiqi. Traffic-sign recognition using deep learning[C]. International Symposium on Geometry and Vision, 2021: 13-25.
|
[20] |
WANG Wenzhe, WU Bin, YANG Sixiong, et al. Road damage detection and classification with faster R-CNN[C]. IEEE International Conference on Big data (Big data), 2018:5 220-5 223.
|
[21] |
孙志琳. 基于深度学习的行人再识别研究[D]. 太原: 山西大学, 2019.
|
|
SUN Zhilin. Research on person re-identification based on deep learning[D]. Taiyuan: Shanxi University, 2019.
|
[22] |
张建华, 孔繁涛, 吴建寨, 等. 基于改进 VGG 卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171.
|
|
ZHANG Jianhua, KONG Fantao, WU Jianzhai, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 161-171.
|
[23] |
LOPEZ-ANTEQUERA M, GOMEZ-OJEDA R, PETKOV N, et al. Appearance-invariant place recognition by discriminatively training a convolutional neural network[J]. Pattern Recognition Letters, 2017, 92: 89-95.
doi: 10.1016/j.patrec.2017.04.017
|
[24] |
周云成, 许童羽, 郑伟, 等. 基于深度卷积神经网络的番茄主要器官分类识别方法[J]. 农业工程学报, 2017, 33(15): 219-226.
|
|
ZHOU Yuncheng, XU Tongyu, ZHENG Wei, et al. Classification and recognition approaches of tomato main organs based on DCNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 219-226.
|
[25] |
FENG Litong, PO L-M, LI Yuming, et al. Integration of image quality and motion cues for face anti-spoofing: a neural network approach[J]. Journal of Visual Communication and Image Representation, 2016, 38: 451-460.
doi: 10.1016/j.jvcir.2016.03.019
|