中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (S1): 263-269.doi: 10.16265/j.cnki.issn1003-3033.2023.S1.0070

• 公共安全 • 上一篇    下一篇

基于卷积神经网络的安全标识分类算法研究

王瑶涵(), 宋泽阳**(), 张利冬   

  1. 西安科技大学 安全科学与工程学院, 陕西 西安 710054
  • 收稿日期:2023-02-14 修回日期:2023-04-08 出版日期:2023-06-30
  • 通讯作者:
    **宋泽阳(1986—),男,湖南长沙人,博士,副教授,硕士生导师,主要从事能源与化工安全、节能环保等方面的研究。E-mail:
  • 作者简介:

    王瑶涵 (1999—),女,山东东营人,硕士研究生,主要研究方向为计算机视觉及其安防应用。E-mail:

  • 基金资助:
    国家自然科学基金资助(51804168)

Research on safety sign classification based on CNN

WANG Yaohan(), SONG Zeyang**(), ZHANG Lidong   

  1. School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China
  • Received:2023-02-14 Revised:2023-04-08 Published:2023-06-30

摘要:

为解决安全标识数据集、安全标识特殊图形及复杂背景缺乏等问题,采用卷积神经网络(CNN)提取安全标识的特征,在VGG-16网络结构和CNN的基础上构建能够识别17种安全标识的VGG16-17模型。原始数据有816张,通过数据增强扩展数据集,得到4 708张图片,按照4∶1的比例将数据集划分为训练集和验证集。通过调节模型中部分参数,分析迭代次数和批量大小对模型识别分类效果的影响。结果表明:当迭代次数为20次、批量大小为32时,模型结果最理想,识别准确率为97.92%,相较于基于未经过数据增强数据集的改进模型的准确率提高19.39%,同时,改进模型相较于传统VGG16模型,识别准确率提高4.3%,证明模型改进和数据增强对图像识别能力的提高有一定帮助。

关键词: 卷积神经网络(CNN), 安全标识, 计算机视觉, 图像识别, 数据增强

Abstract:

In order to solve the problems of lack of safety sign data sets, special safety sign graphics, and complex backgrounds, CNN was used to extract the characteristics of safety signs. Based on the VGG-16 network structure and CNN, a VGG16-17 model that could identify 17 kinds of safety signs was constructed. There were 816 original data, and 4 708 images were obtained by expanding the data set through data augmentation. The data set was divided into a training set and a validation set according to the ratio of 4∶1. By adjusting some parameters in the model, the influence of epoch times and batch size on the recognition and classification effect of the model was analyzed. The results show that when the epoch is 20, and the batch size is 32, the model results are the best, and the recognition accuracy is 97.92%. Compared with the improved model based on the data set with no data augmentation, the accuracy is increased by 19.39%. Meanwhile, compared with the traditional VGG16 model, the recognition accuracy of the improved model is improved by 4.3%. This demonstrates that model improvement and data augmentation contribute to the improvement of image recognition.

Key words: convolution neural network (CNN), safety signs, computer vision, image recognition, data augmentation