[1] |
侯秀芳, 冯晨, 燕汉民, 等. 2023年中国内地城市轨道交通运营线路概况[J]. 都市快轨交通, 2024, 37(1): 10-16.
|
|
HOU Xiufang, FENG Chen, YAN Hanmin, et al. Overview of urban rail transit operational lines in Chinese mainland in 2023[J]. Urban Rapid Rail Transit, 2024, 37(1): 10-16.
|
[2] |
XING Jinduo, YIN Xiaoliang, ZHANG Jun, et al. Resilience modeling and improvement of metro systems considering statistical behaviors of passenger mobility[J]. International Journal of Disaster Risk Reduction, 2023,96: DOI: 10.1016/j.ijdrr.2023.103975.
|
[3] |
CHEN Junfeng, LE Wu, ZHOU Yiqi, et al. Lessons and improvements: subway waterlogging catastrophe in Zhengzhou, China[J]. Tunnelling and Underground Space Technology, 2024,144: DOI: 10.1016/j.tust.2023.105541.
|
[4] |
国务院灾害调查组. 河南郑州“7·20”特大暴雨灾害调查报告[R], 2022.
|
[5] |
王军武, 吴寒, 杨庭友. 基于投影寻踪的地铁车站工程暴雨内涝脆弱性评价[J]. 中国安全科学学报, 2019, 29(9): 1-7.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.001
|
|
WANG Junwu, WU Han, YANG Tingyou. Vulnerability assessment of rainfall and waterlogging in subway stations based on projection pursuit model[J]. China Safety Science Journal, 2019, 29(9): 1-7.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.001
|
[6] |
宋英华, 李玉枝, 霍非舟, 等. 城区内涝条件下城市公交-地铁双层交通网络的脆弱性分析[J]. 安全与环境工程, 2021, 28(2): 114-120.
|
|
SONG Yinghua, LI Yuzhi, HUO Feizhou, et al. Vulnerability of two-layer traffic network of bus and subway under waterlogging condition based on complex network theory[J]. Safety and Environmental Engineering, 2021, 28(2): 114-120.
|
[7] |
陈佳, 刘敬严, 邓曦. 基于IOWA-VAC的地铁车站暴雨内涝脆弱性评价[J]. 水电能源科学, 2023, 41(4): 88-91.
|
|
CHEN Jia, LIU Jingyan, DENG Xi. Vulnerability assessment of heavy rainfall and waterlogging in subway stations based on IOWA-VAC[J]. Water Resources and Power, 2023, 41(4): 88-91.
|
[8] |
朱影含. 暴雨内涝下城市轨道交通地下站点韧性评估研究[D]. 重庆: 重庆交通大学, 2021.
|
|
ZHU Yinghan. Research on resilience evaluation of underground stations of urban rail transit under waterlogging[D]. Chongqing: Chongqing Jiaotong University, 2021.
|
[9] |
闫绪娴, 王俊丽, 范玲, 等. 韧性城市视角下地铁洪涝灾害风险分析:基于Bow-Tie-贝叶斯网络模型[J]. 灾害学, 2022, 37(2): 36-43.
|
|
YAN Xuxian, WANG Junli, FAN Ling, et al. Research on subway flood disaster from the perspective of resilient city:based on Bow-Tie-Bayesian network model[J]. Journal of Catastrophology, 2022, 37(2): 36-43.
|
[10] |
FORERO-ORTIZ E, MARTÍNEZ-GOMARIZ E, CAÑAS PORCUNA M. A review of flood impact assessment approaches for underground infrastructures in urban areas: a focus on transport systems[J]. Hydrological Sciences Journal, 2020, 65(11): 1 943-1 955.
|
[11] |
LIN Zhiyu, HU Shengbin, ZHOU Tianzhong, et al. Numerical simulation of flood intrusion process under malfunction of flood retaining facilities in complex subway stations[J]. Buildings, 2022, 12(6): DOI: 10.3390/buildings12060853.
|
[12] |
RASMUSSEN J. Risk management in a dynamic society: a modelling problem[J]. Safety Science, 1997, 27(2): 183-213.
|
[13] |
赵挺生, 冯楚璇, 蒋灵, 等. 基于AcciMap模型的施工升降机安全风险研究[J]. 中国安全科学学报, 2022, 32(1): 79-84.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.011
|
|
ZHAO Tingsheng, FENG Chuxuan, JIANG Ling, et al. Study on safety risk of builder's hoist based on AcciMap model[J]. China Safety Science Journal, 2022, 32(1): 79-84.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.011
|
[14] |
CHAN Hingkai, SUN Xuting, CHUNG Saiho. When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process?[J]. Decision Support Systems, 2019,125: DOI: 10.1016/j.dss.2019.113114.
|
[15] |
MENG Huixing, AN Xu. Dynamic risk analysis of emergency operations in deepwater blowout accidents[J]. Ocean Engineering, 2021,240: DOI: 10.1016/j.oceaneng.2021.109928.
|
[16] |
GUO Xiaoxue, JI Jie, KHAN F, et al. Fuzzy Bayesian network based on an improved similarity aggregation method for risk assessment of storage tank accident[J]. Process Safety and Environmental Protection, 2021, 149: 817-830.
|
[17] |
CALABRESE A, COSTA R, LEVIALDI N. A fuzzy analytic hierarchy process method to support materiality assessment in sustainability reporting[J]. Journal of Cleaner Production, 2016, 121: 248-264.
|
[18] |
HSU W K, HUANG S S, TSENG W. Evaluating the risk of operational safety for dangerous goods in airfreights:a revised risk matrix based on fuzzy AHP[J]. Transportation Research Part D: Transport and Environment, 2016, 48: 235-247.
|
[19] |
SHI Lei, SHUAI Jian, XU Kui. Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks[J]. Journal of Hazardous Materials, 2014, 278: 529-538.
doi: 10.1016/j.jhazmat.2014.06.034
pmid: 25010458
|
[20] |
DU Yuanwei, SHEN Xinlu. Group hierarchical DEMATEL method for reaching consensus[J]. Computers & Industrial Engineering, 2023,175: DOI: 10.1016/j.cie.2022.108842.
|
[21] |
李广利, 严一知, 刘文琦, 等. 基于DEMATEL-ISM的矿工不安全情绪形成因子研究[J]. 中国安全科学学报, 2021, 31(7): 30-37.
doi: 10.16265/j.cnki.issn 1003-3033.2021.07.005
|
|
LI Guangli, YAN Yizhi, LIU Wenqi, et al. Research on formation factors of miners' unsafe emotions based on DEMATEL-ISM[J]. China Safety Science Journal, 2021, 31(7): 30-37.
doi: 10.16265/j.cnki.issn 1003-3033.2021.07.005
|
[22] |
于耀程, 帅斌, 黄文成. 基于STAMP-ISM的地铁事故分析方法研究[J]. 交通运输工程与信息学报, 2021, 19(2): 46-52.
|
|
YU Yaocheng, SHUAI Bin, HUANG Wencheng. Analytical approach to metro accidents based on STAMP-ISM[J]. Journal of Transportation Engineering and Information, 2021, 19(2): 46-52.
|
[23] |
ZHANG Zixin, WANG Liang, WANG Yingming, et al. A novel alpha-level sets based fuzzy DEMATEL method considering experts' hesitant information[J]. Expert Systems with Applications, 2023,213: DOI: 10.1016/j.eswa.2022.118925.
|