| [1] |
王露露, 尘兴邦, 袁嘉淙, 等. 职业心理学视域下矿工不安全行为研究综述[J]. 中国安全科学学报, 2023, 33(1):48-55.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0782
|
|
WANG Lulu, CHEN Xingbang, YUAN Jiacong, et al. Review of research on miners'unsafe behaviors in perspective of occupational psychology[J]. China Safety Science Journal, 2023, 33(1):48-55.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0782
|
| [2] |
王海军, 齐庆杰, 梁运涛, 等. 我国煤矿重特大事故统计分析及对策建议[J]. 中国安全科学学报, 2024, 34(9):9-18.
doi: 10.16265/j.cnki.issn1003-3033.2024.09.0208
|
|
WANG Haijun, QI Qingjie, LIANG Yuntao, et al. Statistical analysis and countermeasures of major accidents in coal mines in China[J]. China Safety Science Journal, 2024, 34(9): 9-18.
doi: 10.16265/j.cnki.issn1003-3033.2024.09.0208
|
| [3] |
沈铭华, 马昆, 杨洋, 等. AI智能视频识别技术在煤矿智慧矿山中的应用[J]. 煤炭工程, 2023, 55(4):92-97.
doi: 10.11799/ce202304017
|
|
SHEN Minghua, MA Kun, YANG Yang, et al. Application of ai identification technology in intelligent coal mine[J]. Coal Engineering, 2023, 55(4): 92-97.
doi: 10.11799/ce202304017
|
| [4] |
XU Leiyang, WANG Qiang, LIN Xiaotian, et al. Skeleton-based tai chi action segmentation using trajectory primitives and content[J]. Neural Computing and Applications, 2023, 35(13): 9549-9566.
doi: 10.1007/s00521-022-08185-2
|
| [5] |
WU Yangkai, QIU Luhua, WANG Jinming, et al. The use of convolutional neural networks for abnormal behavior recognition in crowd scenes[J]. Information Processing & Management, 2025, 62(1): DOI: 10.1016/j.ipm.2024.103880.
|
| [6] |
HUANG Zengxi, QIN Yusong, LIN Xiaobing, et al. Motion-driven spatial and temporal adaptive high-resolution graph convolutional networks for skeleton-based action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 33(4): 1868-1883.
doi: 10.1109/TCSVT.2022.3217763
|
| [7] |
HE Junyan, WU Xiao, CHENG Zhiqi, et al. DB-LSTM: densely-connected Bi-directional LSTM for human action recognition[J]. Neurocomputing, 2021, 444: 319-331.
doi: 10.1016/j.neucom.2020.05.118
|
| [8] |
CAO Xiangang, ZHANG Chiyu, WANG Peng, et al. Unsafe mining behavior identification method based on an improved st-gcn[J]. Sustainability, 2023, 15(2): DOI: 10.3390/su15021041.
|
| [9] |
李占利, 权锦成, 靳红梅. 基于3D-Attention与多尺度的矿井人员行为识别算法[J]. 国外电子测量技术, 2023, 42(7):95-104.
|
|
LI Zhanli, QUAN Jincheng, JIN Hongmei. Mine personnel behavior recognition algorithm based on 3D-Attention and multi-scale[J]. Foreign Electronic Measurement Technology, 2023, 42(7): 95-104.
|
| [10] |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 4489-4497.
|
| [11] |
饶天荣, 潘涛, 徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别[J]. 工矿自动化, 2022, 48(10): 48-54.
|
|
RAO Tianrong, PAN Tao, XU Huijun. Unsafe action recognition in underground coal mine based on cross-attention mechanism[J]. Journal of Mine Automation, 2022, 48(10): 48-54.
|
| [12] |
FEICHTENHOFER C, FAN Haoqi, MALIK J, et al. Slowfast networks for video recognition[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6202-6211.
|
| [13] |
CAO Zhong, CHEN Kaihong, CHEN Junzhuo, et al. CACS-YOLO: a lightweight model for insulator defect detection based on improved YOLOv8m[J]. IEEE Transactions on Instrumentation and Measurement, 2024:DOI: 10.1109/TIM.2024.3453332.
|
| [14] |
YU Changqian, XIAO Bin, GAO Changxin, et al. Lite-HRNet: a lightweight high-resolution network[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10440-10450.
|
| [15] |
王宇, 于春华, 陈晓青, 等. 基于多模态特征融合的井下人员不安全行为识别[J]. 工矿自动化, 2023, 49(11): 138-144.
|
|
WANG Yu, YU Chunhua, CHEN Xiaoqing, et al. Recognition of unsafe behaviors of underground personnel based on multi modal feature fusion[J]. Journal of Mine Automation, 2023, 49(11): 138-144.
|
| [16] |
ZHOU Huanxin, LI Wenhao, WEI Shuiyi, et al. Steel surface defect detection method based on YOLOv11-MobileNetv4[J]. International Core Journal of Engineering, 2025, 11(2): 10-16.
|
| [17] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
|
| [18] |
HAO Shengnan, LI Xinlei, PENG Wei, et al. YOLO-CXR: a novel detection network for locating multiple small lesions in chest X-ray images[J]. IEEE Access, 2024, 12: DOI: 10.1109/ACCESS.2024.3482102.
|
| [19] |
OUYANG Daliang, HE Su, ZHANG Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning[C]. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.
|
| [20] |
HUANG Hejun, CHEN Zuguo, ZOU Ying, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: DOI: 10.1016/j.compbiomed.2024.108784.
|
| [21] |
CHI Seunggeun, CHI HyungGun, HUANG Qixing, et al. InfoGCN++: learning representation by predicting the future for online skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024:DOI: 10.1109/TPAMI.2024.3466212.
|
| [22] |
MAJD M, SAFABAKHSH R. Correlational convolutional LSTM for human action recognition[J]. Neurocomputing, 2020, 396: 224-229.
doi: 10.1016/j.neucom.2018.10.095
|
| [23] |
SHIQING Hongya, ZHANG Hongbo, LI Zhe, et al. Shuffle-invariant network for action recognition in videos[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2022, 18(3): 1-18.
|