中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S2): 147-153.doi: 10.16265/j.cnki.issn1003-3033.2025.S2.0020

• 安全工程技术 • 上一篇    下一篇

基于优化小波-LSTM方法的露天矿边坡位移预测

余子豪1,2(), 张亦海1,2,**(), 谭梦溪1,2, 李江1,2   

  1. 1 中国安全生产科学研究院, 北京 100012
    2 中安国泰(北京)科技发展有限公司, 北京 102209
  • 收稿日期:2025-08-10 出版日期:2026-02-04
  • 通信作者:
    **张亦海(1989—),男,河北沧州人,博士,高级工程师,主要从事露天矿山边坡滑坡预警预报方面的工作。E-mail:
  • 作者简介:

    余子豪 (1996—),男,河北石家庄人,硕士,工程师,主要从事露天矿山边坡安全及监测预警方法方面的工作。E-mail:

    张亦海 高级工程师

  • 基金资助:
    应急管理部重点科技计划 2024 年度项目(2024EMST080802); 非煤露天矿山灾害防控国家矿山安全监察局重点实验室开放基金资助(FMLTKS202409)

Displacement prediction of open-pit mine slope based on optimized wavelet-LSTM method

YU Zihao1,2(), ZHANG Yihai1,2,**(), TAN Mengxi1,2, LI Jiang1,2   

  1. 1 China Academy of Safety Science and Technology, Beijing 100012, China
    2 Cathay Safety Technology Co., Ltd., Beijing 102209, China
  • Received:2025-08-10 Published:2026-02-04

摘要:

为解决露天矿边坡位移监测数据中噪声干扰严重影响位移预测精度的问题,提出一种融合数据平滑与深度学习的组合预测模型。首先,采用小波变换(WT)去噪处理原始时间序列,以提取真实的变形趋势分量;然后,基于平滑后的高质量数据,调优长短期记忆网络(LSTM)的关键参数,构建优化LSTM预测模型,用于学习边坡位移复杂的长期依赖关系;最后,以内蒙某金属矿为例,利用提出的方法进行位移预测与验证。结果表明:与直接使用原始数据的单一LSTM基准模型相比,该优化组合模型的预测精度得到有效提升,其均方根误差(RMSE)降低86.3%,决定系数R2由0.51提升至0.76,证明其能有效提升预报的准确性与时效性。

关键词: 小波变换(WT), 长短期记忆网络(LSTM), 边坡位移预测, 监测数据, 预测模型

Abstract:

The noise interference in the displacement monitoring data of the open-pit mine slope seriously affects the accuracy of landslide prediction. To address this issue, a hybrid prediction model integrating data smoothing and deep learning was proposed in this paper. Firstly, the WT was used to denoise the original time series to extract the real deformation trend component. Then, based on the smoothed high-quality data, the key parameters of the LSTM network were optimized, and an optimized LSTM prediction model was constructed to learn the complex long-term dependence of slope displacement. The results show that compared with the single LSTM benchmark model that directly uses the original data, the prediction accuracy of the optimized combination model is effectively improved. The root mean square error (RMSE) is reduced by 86.3%, and the coefficient of determination (R2) is increased from 0.51 to 0.76, which proves that it can effectively improve the accuracy and timeliness of the prediction and has high engineering practice value.

Key words: wavelet transform (WT), long short-term memory (LSTM) network, slope displacement prediction, monitoring data, prediction model

中图分类号: