中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (2): 89-95.doi: 10.16265/j.cnki.issn1003-3033.2023.02.1269

• 安全工程技术 • 上一篇    下一篇

基于SVM的含缺陷20钢弯管爆破压力预测

郄彦辉1(), 郭涛1, 周凌志1, 王昱2   

  1. 1 河北工业大学 机械工程学院,天津 300130
    2 河北省特种设备监督检验研究院,河北 石家庄050061
  • 收稿日期:2022-09-17 修回日期:2022-12-16 出版日期:2023-02-28
  • 作者简介:

    郄彦辉 (1976—),男,河北顺平人,博士,副教授,硕士生导师,主要从事承压设备的安全评估、力学超材料结构的设计与性能表征、结构的数值模拟和优化设计等方面的研究。Email:

    王 昱,高级工程师

  • 基金资助:
    河北省市场监督管理局科技计划项目(2018ZD13); 河北省市场监督管理局科技计划项目(2020ZC26); 河北省特种设备监督检验研究院科技计划项目(HBTJ2021CY003)

Prediction of burst pressure of 20 steel elbow with defects based on SVM

QIE Yanhui1(), GUO Tao1, ZHOU Lingzhi1, WANG Yu2   

  1. 1 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
    2 Hebei Special Equipment Supervision and Inspection Institute, Shijiazhuang Hebei 050061, China
  • Received:2022-09-17 Revised:2022-12-16 Published:2023-02-28

摘要:

为快速、精确预测含局部减薄缺陷的弯管爆破压力,首先验证显式非线性有限元模型的模拟精确性,然后以168组不同缺陷尺寸下20钢弯管爆破压力的有限元模拟数据作为学习样本,建立含局部减薄缺陷20钢弯管爆破压力预测的支持向量机(SVM)模型;其次利用交叉验证(CV)、遗传算法(GA)、粒子群算法(PSO)分别优化SVM模型;最后分析对比用于预测弯管爆破压力的3种优化SVM模型与ASME B31G-2009、DNV RP-F101、SHELL 92等3种通用规范的计算误差。结果表明:CV-SVM、GA-SVM、PSO-SVM等3种模型的预测误差均小于3种规范的计算误差,其最大相对误差分别为-2.33%、-3.4%和1.94%;说明SVM模型用于预测弯管爆破压力时操作简单、计算时间短、预测精度高、工程实用性好。

关键词: 支持向量机(SVM), 局部减薄缺陷, 20钢弯管, 爆破压力, 交叉验证(CV), 遗传算法(GA), 粒子群算法(PSO)

Abstract:

In order to quickly and accurately predict the burst pressure of 20 steel elbow with local wall-thinning defects, the SVM model for predicting burst pressure was established. After verifying the simulation accuracy of the explicit nonlinear finite element method, the 168 sets of data of explicit finite element simulation for burst pressure of 20 steel elbows with different defect sizes were used as learning samples of SVM model. CV, GA and PSO were used to optimize the SVM model. The prediction errors were analyzed by comparing the burst pressure calculated by the three optimized SVM model and 3 types of common criterions (ASME B31G-2009, DNV RP-F101 and SHELL 92). The results show that the prediction errors of the three optimized SVM models are less than that of the current common criterions at home and abroad. When CV-SVM and GA-SVM and PSO-SVM models are used to predict the burst pressure of 20 steel elbows with local thinning defects, and the maximum errors of CV-SVM, GA-SVM and PSO-SVM are-2.33%,-3.4% and 1.94% respectively. SVM model is easy to use, has high prediction accuracy, good engineering practicability and short time consumption.

Key words: support vector machine (SVM), local wall-thinning defects, 20 steel elbow, burst pressures, cross validation (CV), genetic algorithm(GA), particle swarm optimization (PSO)