中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (7): 229-238.doi: 10.16265/j.cnki.issn1003-3033.2024.07.2092

• 防灾减灾技术与工程 • 上一篇    下一篇

基于无人机影像深度学习的滑坡灾害智能识别

江松1,2,3(), 李研博1, 何旭乾1, 何润丰1,2, 张超1,4, 张存良1,5   

  1. 1 西安建筑科技大学 资源工程学院,陕西 西安 710055
    2 西安建筑科技大学 管理学院,陕西 西安 710055
    3 中钢集团马鞍山矿山研究总院有限公司,安徽 马鞍山 243000
    4 洛阳栾川钼业集团股份有限公司,河南 洛阳 471500
    5 内蒙古汇能煤电集团有限公司,内蒙古 鄂尔多斯017000
  • 收稿日期:2024-01-14 修回日期:2024-04-18 出版日期:2024-07-28
  • 作者简介:

    江 松 (1990—),男,江西鄱阳人,博士,教授,主要从事矿山智能科学与工程、大数据灾害识别预警方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金青年项目资助(52104146); 中国博士后科学基金面上项目资助(2022M722925); 陕西省社会科学基金资助(2020R005); 内蒙古呼和浩特市科技局项目(2023-高-12)

Intelligent identification of landslide disaster based on deep learning of UAV images

JIANG Song1,2,3(), LI Yanbo1, HE Xuqian1, HE Runfeng1,2, ZHANG Chao1,4, ZHANG Cunliang1,5   

  1. 1 School of Resource Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China
    2 School of Management, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China
    3 Sinosteel Maanshan General Institute of Mining Research Co., Ltd., Maanshan Anhui 243000, China
    4 Luoyang Luanchuan Molybdenum Group Co., Ltd., Luoyang Henan 471500, China
    5 Inner Mongolia Huineng Coal Power Group Co., Ltd., Ordos Inner Mongolia 017000, China
  • Received:2024-01-14 Revised:2024-04-18 Published:2024-07-28

摘要:

为精确识别和预警露天矿滑坡灾害,提出一种基于面向对象的标注数据集和Res-U-Net模型相结合的露天矿滑坡智能识别方法。首先,以无人机航测获取研究区矿山滑坡影像数据;其次,采用多尺度-光谱差异分割方法和阈值分离原理,对露天矿滑坡数据进行分割和分类,完成基于面向对象方法的滑坡数据集构建;然后,以U-Net网络作为基础架构,在每个卷积层融入ResNet的残差模块,构建基于Res-U-Net的滑坡识别语义分割模型;最后,识别不同方法构建的滑坡数据集,并对比Res-U-Net模型与主流的语义分割模型全卷积神经网络(FCN)、U-net。结果表明:基于面向对象标注的滑坡数据集相比于传统人工标注数据集具有更好的滑坡识别效果,在准确率、召回率、F1分数和kappa系数上都有12%以上的提升;Res-U-Net模型的滑坡识别精度均在0.8以上,实现露天矿山滑坡灾害精准识别。

关键词: 无人机影像, 深度学习, 滑坡灾害, 智能识别, 面向对象, Res-U-Net

Abstract:

An open-pit mine landslide identification method was proposed based on object-oriented annotation datasets and the Res-U-Net model to realize accurate identification and early warning of open-pit mile landslide disasters. Firstly, the mine landslide image data in the study area were obtained by UAV aerial survey. Secondly, the multi-scale-spectral segmentation method and threshold separation principle were applied to divide and classify the open-pit mine landslide data, and the landslide dataset was developed based on the object-oriented method. Then, the U-Net network was used as the infrastructure to propose a landslide identification semantic segmentation model based on Res-U-Net by integrating the residual module into each convolutional layer. Finally, the datasets constructed by different methods were used to identify landslides, and the Res-U-Net model was compared with the widely used semantic segmentation models, Fully Convolutional Networks (FCN), and U-net. The results indicated that the landslide data set based on object-oriented annotation had better landslide identification performance when compared to the traditional manual annotation dataset, resulting in improvements in identification accuracy, recall rate, F1 score, and kappa coefficient of more than 12%. The landslide identification accuracy of the Res-U-Net model was more than 0.8, realizing the accurate landslide open-pit mine disaster identification.

Key words: unmanned aerial vehicle image, deep learning, landslide disaster, intelligent identification, object oriented, Res-U-Net

中图分类号: