中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 137-144.doi: 10.16265/j.cnki.issn1003-3033.2025.04.1398

• 安全工程技术 • 上一篇    下一篇

基于Stacking集成学习的隧道突水危险预测模型

卢佳乐1,2(), 张念 副教授1,2,**(), 牛萌萌1, 万飞 研究员3   

  1. 1 太原理工大学 土木工程学院,山西 太原 030024
    2 北京交通大学 隧道及地下工程教育部工程研究中心,北京 100044
    3 交通运输部公路科学研究所,北京 100088
  • 收稿日期:2024-11-15 修回日期:2025-02-14 出版日期:2025-04-28
  • 通信作者:
    **张 念(1984—),男,湖北襄阳人,博士,副教授,主要从事隧道及地下工程安全与算法优化方面的研究。E-mail:
  • 作者简介:

    卢佳乐 (1998—),男,山西运城人,硕士研究生,主要研究方向为隧道工程安全与算法优化。E-mail:

  • 基金资助:
    中央引导地方科技发展资金资助(YDZJSX20231A021); 隧道及地下工程教育部工程研究中心(北京交通大学)开放研究基金资助(TUC2024-03); 中央级公益性科研院所基本科研业务费项目(2024-9006)

Hazard prediction model of tunnel water inrush based on stacking ensemble learning

LU Jiale1,2(), ZHANG Nian1,2,**(), NIU Mengmeng1, WAN Fei3   

  1. 1 College of Civil Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
    2 Research Center of Tunneling and Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
    3 Research Institute of Highway Ministry of Transport, Beijing 100088, China
  • Received:2024-11-15 Revised:2025-02-14 Published:2025-04-28

摘要:

为解决机器学习在隧道突水危险智能预测领域存在的模型较单一和预测精度不够理想等问题,提出一种基于Stacking集成学习方法的预测模型。首先,通过搜集95条隧道共计232组隧道突水灾害数据建立隧道突水灾害数据集,并进行数据预处理;然后,选取3种基学习器和2种元学习器以不同组合方式训练出8组Stacking集成模型,并筛选出6组较优的集成模型;最后,使用网格搜索调参并结合5折交叉验证超参数调优模型,对比分析6组参数调优后的Stacking集成模型的预测结果,选择出最优Stacking集成模型。结果表明:采用Stacking集成学习方法改进最优单模型支持向量机(SVM)后得到SVM+朴素贝叶斯(NB )+线性回归(LR)集成模型,其精确率、召回率和F1分数分别达到0.94、0.91和0.92,整体预测效果优于其他对比模型,可准确预测隧道突水危险等级。

关键词: Stacking集成学习, 隧道突水, 预测模型, 危险等级, 机器学习

Abstract:

In order to solve the problems that machine learning exists in the hazard intelligent prediction field of tunnel water inrush, such as relatively simple models and imperfect prediction accuracy, a prediction model based on the stacking ensemble learning was proposed. Firstly, the tunnel water inrush disaster dataset was established by collecting 232 groups of water inrush disaster data from 95 tunnels, and the data was preprocessed. Then, 3 base learners and 2 meta learners were selected to train 8 sets of stacking ensemble models in different combinations, and 6 sets of optimal ensemble models were selected. Finally, the optimal stacking ensemble model was selected by comparing and analyzing the prediction results of 6 groups of parameters optimized and stacking ensemble model with the grid search parameters and the 5-fold cross-validation hyperparameter optimization model. The results show that SVM(Support Vector Machine )+NB (Naive Bayes) + LR (Linear Regression) ensemble model is obtained after the optimal single model SVM is improved with the stacking ensemble learning method. Its accuracy, recall, and F1 score are 0.94, 0.91, and 0.92, respectively. The overall prediction effect is better than that of other compative models, and it can accurately predict the hazard level of tunnel water inrush.

Key words: Stacking ensemble learning, tunnel water inrush, prediction model, hazard level, machine learning

中图分类号: